TY - THES A1 - Lang, Carmen T1 - Molekulare Charakterisierung, Expressionsmuster und Interaktionen der Lamina-assoziierten Polypeptide 2 (LAP2) in Xenopus laevis T1 - Molecular characterization, expression pattern and interactions of lamina-associated polypeptides 2 (LAP2) in Xenopus laevis N2 - Lamina-assoziierte Polypeptide 2 (LAP2) in Vertebraten sind bis auf zwei Ausnahmen integrale Membranproteine der inneren Kernmembran, die durch unterschiedliches Spleißen eines einzigen Gens entstehen. Während die aminoterminale Domäne, die allen LAP2 Isoformen gemeinsam ist, in Interphasezellen mit Chromatin und dem DNA-Bindungsprotein BAF interagiert, beinhaltet der carboxyterminale Bereich die Lamin Bindungsdomäne und eine Transmembrandomäne. Diese beiden carboxyterminalen Domänen bewirken die Lokalisation der Proteine an die Kernhülle. In dieser Arbeit konnten drei LAP2 Isoformen von Xenopus laevis molekular charakterisiert werden, die alle integrale Membranproteine sind. In somatischen Zellen werden vorwiegend die beiden Isoformen LAP2γ und LAP2ß exprimiert, in frühen Entwicklungsstadien dagegen die größte Isoform, das LAP2ω. In allen bekannten funktionellen Domänen weisen die LAP2 Proteine von Xenopus eine hohe Sequenzübereinstimmung mit den LAP2 Proteinen in Säugern auf. Allerdings finden sich in Xenopus zusätzliche Isoform-spezifische Proteindomänen, die zwischen der amino-terminalen Domäne und der Lamin Bindungsdomäne eingeschoben sind. Eine dem Xenopus LAP2ω im Aufbau und in der Expression vergleichbare Isoform wurde bisher nur beim Zebrafisch nachgewiesen. Auch die somatisch exprimierten LAP2 Isoformen des Zebrafisch (ZLAP2b und ZLAP2g) entsprechen den beiden somatischen Xenopus Isoformen. Um Unterschiede und Gemeinsamkeiten zwischen den drei LAP2 Isoformen feststellen zu können, wurden die Proteine des Zebrafischs als GFP Fusionsproteine in Xenopus A6 Zellen exprimiert. ZLAP2ω und LAP2ß wurden vorwiegend an mitotische Chromosomen gebunden, dagegen war der größte Teil des ZLAP2g im Cytoplasma verteilt. Mutanten der drei Proteine, denen jeweils die Lamin Bindungsdomäne einschließlich der Transmembrandomäne fehlte, zeigten dasselbe Verhalten. Somit scheinen diese b- und w-spezifischen Domänen Chromatin-Bindungseigenschaften zu besitzen. In Amphibien liegt das XLAP2ß in der Interphase in einem Proteinkomplex mit A- und B-Typ Laminen vor. Diese Proteinkomplexe konnten durch Immunpräzipitationen von GFP-XLAP2ß Fusionsproteinen mit GFP Antikörpern nachgewiesen werden. Die Extrakte für die Immunpräzipitationen wurden aus stabil transfizierten Xenopus A6 Zelllinien gewonnen. Diese Ergebnisse sind in Übereinstimmung mit in vitro Bindungsstudien mit GST- XLAP2ß Fusionsproteinen. Für die Bildung des Lamin-LAP2ß Proteinkomplexes und auch für die korrekte Lokalisation des Proteins an die Kernhülle reicht ein in Vertebraten hochkonservierter Bereich von 36 Aminosäuren in Kombination mit der Transmembrandomäne aus. Zudem scheint diese kurze carboxyterminale LAP2ß Sequenz in Xenopus, Zebrafisch und Ratte mit dem endogenen LAP2ß um Bindungsstellen in der Kernlamina zu konkurrieren. Sowohl in Amphibien- wie auch in Säugerzellen konnte in transient transfizierten Zellen eine beträchtliche Verminderung des endogenen LAP2ß beobachtet werden, ohne dass dabei die Kernmorphologie und die Verteilung anderer Kernmembranproteine beeinträchtigt wurde. Somit scheint die Lamin-Bindungsdomäne des LAP2ß in Vertebraten stark konserviert zu sein. N2 - Lamina-associated polypeptides 2 (LAP2) in vertebrates are, except for two mammalian isoforms, integral membrane proteins of the inner nuclear membrane which are generated by alternative splicing from a single gene. Whereas the aminoterminal domain, which is common for all LAP2 isoforms, interacts with chromatin and the DNA-binding protein BAF in interphase cells, the carboxyterminal region contains the lamin binding domain and a transmembrane domain. Both carboxyterminal domains are responsible for the localisation of the proteins in the nuclear envelope. In this work three LAP2 isoforms of Xenopus laevis were molecularly characterised, all of them being integral membrane proteins. In somatic cells the two predominant isoforms are LAP2γ and LAP2ß, whereas in early developmental stages only the largest isoform LAP2ω can be found. In all known functional domains, the LAP2 proteins of Xenopus show a high sequence homology to the LAP2 proteins of mammals. But in Xenopus, additional isoform-specific domains can be found which are inserted between the aminoterminal domain and the lamin binding domain. Only in zebrafish, an isoform comparable in structure and expression pattern to the Xenopus LAP2ω can be found. Also the LAP2 isoforms characteristic for somatic cells of zebrafish (LAP2ß and LAP2γ) correspond to the two somatic Xenopus isoforms. To enable the investigation of differences and similarities between the three LAP2 isoforms, the zebrafish proteins were expressed as GFP fusion proteins in Xenopus A6 cells. ZLAP2ω and ZLAP2ß were mainly bound to mitotic chromosomes, whereas ZLAP2γ was mostly distributed in the cytoplasm. Mutants of the three proteins which were lacking the lamin binding region and the transmembrane domain, showed the same behaviour. It seems therefore that the ω- and ß-specific domains mediate chromatin binding. In interphase cells of amphibian XLAP2ß is part of a protein complex also containing A- and B-type lamins. The existence of these protein complexes could be demonstrated by immunoprecipitations of GFP-LAP2ß fusion proteins with GFP antibodies. The extracts used for these immunoprecipitations were prepared from stably transfected Xenopus A6 cell lines. These results correspond to the results obtained by in vitro binding studies with GST-XLAP2ß fusion proteins. In vertebrates a short, highly conserved region of 36 amino acids in combination with the transmembrane domain, is sufficient for the formation of the lamin-LAP2ß protein complex as well as for the correct localisation of the proteins to the nuclear envelope. Moreover, it seems that this short carboxyterminal sequence of LAP2ß in Xenopus, zebrafish and rat competes with endogenous LAP2ß for the same binding sites in the nuclear lamina. In amphibian as well as in mammalian cells a significant reduction of the endogenous LAP2ß can be seen in transiently transfected cells. The nuclear morphology and the distribution of other nuclear components seems to be unchanged. Therefore it can be concluded that the lamin binding domain of LAP2ß is highly conserved in vertebrates. KW - Glatter Krallenfrosch KW - Kernhülle KW - Polypeptide KW - Genexpression KW - Lamina-assoziierte Polypeptide KW - Expressionsmuster KW - Interaktionen KW - molekulare Charakterisierung KW - Lamina-associated polypeptides KW - expression pattern KW - interactions KW - molecular characterization Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3844 ER - TY - THES A1 - Körner, Ulrich T1 - Funktionelle Rolle von HMGN-Proteinen während der Embryonalentwicklung von Xenopus laevis T1 - The functional role of the HMGN proteins during embryogenesis of Xenopus laevis N2 - HMGN Proteine sind Architekturelemente des Chromatins und besitzen die Fähigkeit, Chromatin aufzulockern. Sie ermöglichen anderen Proteinen den Zugang zu Nukleosomen und unterstützen DNA-abhängige Prozesse wie Replikation, Transkription und DNA-Reparatur. In dieser Arbeit wurde die funktionelle Rolle der HMGN Proteine während der Embryogenese am Beispiel des südafrikanischen Krallenfroschs Xenopus laevis untersucht. Dabei wurde entdeckt, dass sowohl die Expression als auch die zelluläre Verteilung der HMGN Proteine entwicklungsspezifisch reguliert ist. Eine Manipulation der HMGN Proteinmengen während der Embryonalentwicklung führte zu schweren Fehlentwicklungen in Postblastula Embryonen. In der Oogenese waren sowohl Xenopus HMGN mRNAs als auch Xenopus HMGN Proteine in allen Oozytenstadien nachweisbar. Interessanterweise waren HMGN Proteine in späteren Oozytenstadien nur im Zytoplasma zu finden und nicht mit Lampenbürstenchromosomen assoziiert. Im Zuge der Maturation der Oozyten zu Eiern verschwinden die Proteine gänzlich. Während der Embryogenese waren HMGN Proteine dann erst wieder ab der Blastula detektierbar, zeitgleich mit der transkriptionellen Aktivierung des embryonalen Genoms. Gleichzeitig wiesen ihre Expressionsmuster, zumindest auf mRNA-Ebene, auf Gewebspezifität hin. Whole mount in situ-Hybridisierungen und RT-PCR-Analysen zeigten eine erhöhte mRNA-Menge in mesodermalen und neuroektodermalen Geweben von Schwanzknospenstadien. Nach Injektion rekombinanter HMGN Proteine (Überexpression) oder Morpholino-Antisense-Oligonukleotiden (knock-down) in die Zygote entwickelten sich Embryonen mit offenen Rücken, stark verkürzten und gebogenen Körperachsen und deformierten Kopfstrukturen als Hauptmerkmale. Histologische Analysen und insbesondere die Magnetresonanz Bildgebung deuteten auf Fehler in der Mesodermdifferenzierung hin. Die Analysen zeigen, dass eine bestimmte kritische zelluläre HMGN Proteinmenge für eine korrekte Embryonalentwicklung von Xenopus laevis notwendig ist. Durch „animal cap assays“ und RT-PCR-Expressionsanalysen Mesoderm-spezifischer Gene konnte schließlich gezeigt werden, dass HMGN Proteine die Regulation Mesoderm-spezifischer Gene beeinflussen. Die Ergebnisse lassen vermuten, dass auch die HMGN-Genexpression während der Mesodermdifferenzierung reguliert wird. Durch eine Analyse des Expressionsbeginns entwicklungsrelevanter Gene während der Midblastula Transition konnte gezeigt werden, dass veränderte HMGN Proteinmengen den Expressionsbeginn spezifischer Gene wie Xbra und chordin beeinflussen. Damit konnte zum ersten Mal ein Einfluss dieser ubiquitären Chromatinproteine auf die Expression spezifischer Gene gefunden werden. Die durch HMGN Proteine verursachte fehlerhafte Expression von Xbra und chordin als Schlüsselgene der Mesodermdifferenzierung kann die Fehlentwicklungen mesodermaler Strukturen erklären. N2 - HMGN proteins are architectural chromatin proteins that reduce the compaction of the chromatin fiber, facilitate access to nucleosomes and modulate DNA-dependent processes such as replication, transcription and DNA repair. In this work the functional role of the HMGN proteins during embryogenesis was analyzed using the African clawed frog Xenopus laevis as a model system. The expression and cellular location of the HMGN proteins was found to be developmentally regulated. Experimental manipulations of the HMGN protein amounts led to gross developmental defects in postblastula embryos. HMGN transcripts and proteins were present throughout oogenesis. Interestingly, the HMGN proteins were stored in the cytoplasm of later oocyte stages and excluded from the oocytes nuclei and lampbrush chromosomes. Upon maturation of oocytes into eggs, HMGN proteins were no longer detectable. During embryogenesis, HMGN proteins were first detected in blastula stage embryos, coinciding with the transcriptional activation of the embryonic genome. At least at the mRNA level the expression pattern showed a tissue specific pattern, with relatively high levels of mRNAs in the mesodermal and neuroectodermal regions of early tailbud embryos as shown by whole mount in-situ hybridization and RT-PCR-analyses. After microinjection of recombinant HMGN proteins (overexpression) or morpholino-antisense oligonucleotides (knock-down) the embryos displayed typical phenotypes with imperfect closure of the blastopore, distorted body axis and abnormal head structures. Histological analyses and magnetic resonance imaging indicated that mesoderm differentiation was particularly affected by aberrant HMGN protein levels. The results demonstrate that proper embryonic development of Xenopus laevis requires precisely regulated levels of HMGN proteins. “Animal cap assays” and RT-PCR-analyses of the expression of mesodermal genes indicated that HMGN proteins are involved in the regulation of mesoderm specific genes. These experiments also indicated that the HMGN expression itself is regulated during mesoderm differentiation. Moreover, by studying the expression pattern of developmentally relevant genes during midblastula transition it became evident that altered HMGN protein levels influence the onset of the expression of specific genes such as Xbra and chordin. The results show, for the first time, that these ubiquitous chromatin proteins modulate the expression of specific genes. The HMGN-induced misexpression of Xbra and chordin as key regulatory genes during mesoderm differentiation may explain the observed malformations of mesodermal structures. KW - Glatter Krallenfrosch KW - HMG-Proteine KW - Genexpression KW - Embryonalentwicklung KW - HMGN Proteine KW - Xenopus laevis KW - Genexpression KW - Chromatin KW - Embryonalentwicklung KW - HMGN proteins KW - Xenopus laevis KW - chromatin KW - gene expression KW - early development Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9166 ER - TY - THES A1 - Gareiß, Martin T1 - Molekulare Charakterisierung und entwicklungsspezifische Expression der Kernmembranproteine Emerin und MAN1 im Tiermodell Xenopus laevis T1 - Molecular characterization and developmental expression of the nuclear membrane proteins ,emerin’ and ,MAN1’ in the model system Xenopus laevis N2 - Mutationen im humanen Emerin-Gen verursachen beim Menschen eine angeborene Muskelschwäche, die X-gebundene Emery-Dreifuss. Der Phänotyp dieser Störung manifestiert sich in der zweiten und dritten Lebensdekade durch Verkürzungen der Nacken , Ellenbogen- und Achillessehnen, progressiven Muskelschwund am Oberkörper sowie Störung der Reizweiterleitung und eine Kardiomyopathie. Zwar wurden die Funktionen dieses ubiquitären Kernmembranproteins bislang intensiv erforscht, allerdings blieben die krankheitsverursachenden Mechanismen, die für den späten Ausbruch der gewebespezifischen Erkrankung verantwortlich sind, noch weitestgehend unverstanden. Um Erkenntnisse über die pathologische(n) Funktion(en) des integralen Membranproteins Emerin zu gewinnen, wurde dessen spatio-temporäre Transkriptions- und Expressionsmuster während der frühen Embryonalentwicklung im Modellsystem Xenopus laevis charakterisiert. Durch EST-Datenbankanalysen konnten in der pseudotetraploiden Spezies zwei Emerin-Gene (Xemerin1 und -2) identifiziert werden. Im Unterschied zu dem längeren Säuger-Emerin (254 Reste bei Homo sapiens ) konnte allerdings kein Kernlokalisationssignal und auch kein serinreicher Sequenzbereich festgestellt werden. Durch Herstellung monoklonaler Antikörper wurde die subzelluläre und gewebespezifische Lokalisation der Xemerin-Proteine untersucht. Interessanterweise war Xemerin weder in der Immunfluoreszenz noch im Immunblot in Oozyten nachweisbar. Mit dem zweidimensionalen Gelektrophorese-Verfahren NEPHGE konnte gezeigt werden, dass der von uns hergestellte monoklonale Antikörper 59/7 beide Xemerin-Formen erkannte und die Proteine durch unterschiedliche molekulare Massen und isoelektrische Punkte voneinander zu trennen waren. Durch Immunoblotting embryonaler Proteine aus unterschiedlichen Entwicklungsstadien konnte gezeigt werden, dass Xemerin1 und -2 im Laufe der Embryogenese von Xenopus laevis erstmals im Entwicklungsstadium 43 exprimiert werden. Unerwarteterweise konnte durch RT-PCR-Analysen eine Aktivität der Xemerin-Gene während der gesamten Embryogenese belegt werden. Northernblot- und Sequenzanalysen der Xemerin-mRNA zeigten außerordentlich große untranslatierte Bereiche mit snRNP-Bindungsmotiven. Durch zwei voneinander unabhängige Analyseverfahren wurde festgestellt, dass die Xemerin-Genaktivität ab dem Stadium 30 deutlich zunahm. Äußerst interessant war in diesem Zusammenhang die Beobachtung, dass exakt zu diesem Zeitpunkt die Aktivität des XMAN1-Gens, einem weiteren Protein der inneren Kernmembran, signifikant herunterreguliert wurde. Whole-mount in situ Hybridisierungsversuche zeigten einen Xemerin-Expressionsschwerpunkt in neuro-ektodermalen Geweben von Tadpole-Embryonen, wie dies auch von XMAN1 (auch SANE genannt) berichtet wurde. Aufgrund dieser Erkenntnisse wurde angenommen, dass Xemerin und XMAN1 überlappende Funktionen aufweisen. Durch die Herstellung rekombinanter Fusionproteine konnte gezeigt werden, dass XMAN1 eine identische subzelluläre Verteilung wie Xemerin aufwies. In vitro Bindungsassays wiesen eine direkte Wechselwirkung von XMAN1 mit beiden Xemerin-Formen sowie mit Xenopus Lamin A nach. Diese Arbeit konnte durch die Charakterisierung von Xenopus Emerin die Grundlagen für weitere intensive Forschungen legen und zeigt eindeutig, dass das Modellsystem Xenopus laevis mit dem Säugermodell Maus konkurrenzfähig ist, um die krankheitsverursachende Mechanismen der Emery-Dreifuss Muskeldystrophie aufzuklären. N2 - Mutations in the human emerin gene EMD cause a rare form of an inheritated muscle dysfunction of striated muscle, named Emery-Dreifuss muscular dystrophy (EDMD1; OMIM 310300). The clinical phenotype of this genetic perturbance is manifested in 2nd-3rd decade by contraction of the cervical, elbow and Achilles tendons, by progressive muscle wasting and disturbance of the conduction system and cardiomyopathy, often leading to sudden death. Extensive investigations were made on the functions of this ubiquitous nuclear membrane protein, but the disease causing mechanisms remain obscure leading to the late onset of this tissue specific disease. To allure insights of the pathological function(s) of emerin this work examines the spatio-temporal transcription and expression patterns of emerin during development of the vertebrate model Xenopus laevis. Sequence analysis of EST-databases identified two emerin genes in the pseudo-tetraploid organism Xenopus laevis, Xemerin1 and Xemerin2, respectively. In comparison to the human and murine orthologues Xenopus emerins exhibit both similarities and differences. Structural analyses revealed an N-terminal conserved LEM-domain in the C-terminus and a unique hydrophobic transmembrane domain in the carboxy tail. Unlike the extended mammalian emerin (Homo sapiens 254 residues, Mus musculus 259 residues) neither a nucleus localization signal nor a serinerich region could be detected. However, comparison of the putative phosphorylation sites showed three equivalent sites as for the human emerin. Synthesis of specific monoclonal antibodies and recombinant fusion proteins elucidate the subcellular and tissue-specific localization of Xemerins. Similar to mammalian emerins immunofluorescence microscopy and immunoblotting showed clearly that both Xemerin1 and Xemerin2 are integral nuclear membrane proteins expressing ubiquitously in differentiated cells. Intriguingly, in oocytes Xemerin was undetectable by immunofluorescence and immunoblotting, respectively. Two-dimensional gel electrophoresis NEPHGE proved that our self-made monoclonal antibody 59/7 recognized both Xemerins highlighting two different molecular masses and isoelectric points. Interestingly, Xemerin2 exhibits an increased isoelectric point in 5-days old larvae than in adult somatic culture cells. Immunoblotting of embryonic proteins derived from different developmental stages showed that Xemerin1 and -2 are expressed in stage 43 (Nieuwkoop and Faber, 1975) during Xenopus embryogenesis for the first time. In this context, it is noteworthy that Xenopus A-type lamins – in contrast to previous reports – are already detectable in stage 28. Unexpectedly, RT-PCR analyses proved activity of the Xemerin genes during entire embryogenesis in all stages examined yet. Northern-blotting and sequence analyses of the Xemerin mRNA revealed exceeding untranslated regions with snRNP binding motives. Two independent techniques (band-quantification and quantitative real-time-PCR) bared a significantly increased activity of the Xemerin-genes upon stage 30. Outstanding interest provided the awareness, that exactly at this moment the activity of XMAN1, another inner nuclear membrane protein, was significantly down regulated. Whole mount in situ hybridizations exhibited stressed Xemerin expression in neuro-ectodermal tadpole tissues, as simultaneously reported for XMAN1 (also known as SANE) by to other groups (Osada et al., 2003; Raju et al., 2003). Congruent expression patterns of Xemerin proteins were provided by indirect immunofluorescence of embryonic thin-sections. These results corroborate the theory that XMAN1 and Xemerin could have overlapping functions. At first, recombinant fusion proteins showed an identical subcellular distribution of XMAN1 in comparison with Xemerin. Hence, in vitro binding assays proved direct interaction between Xemerins and XMAN1 as well as with Xenopus A-type lamins. Unfortunately, there is no functional XMAN1 antibody available up to now. Thus, it remains unclear if XMAN1 has overlapping functions with Xemerins during embryogenesis in vivo. Nevertheless, by characterizing Xenopus emerin this work displayed fundamental features for further studies. This opus definitely showed that the model system Xenopus laevis is competitive to the mammalian model ‘mouse’ elucidating the disease causing mechanisms of Emery-Dreifuss muscular dystrophy. KW - Glatter Krallenfrosch KW - Emerin KW - Oozyte KW - Xenopus laevis KW - Emerin KW - MAN1 KW - Oozyte KW - Embryonalentwicklung KW - Xenopus laevis KW - emerin KW - MAN1 KW - oocyte KW - early development Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19869 ER - TY - THES A1 - Glaser, Stefanie T1 - Untersuchung des RNA-Kernexportes im Modellsystem Xenopus laevis T1 - Analysis of the RNA nuclear export in the model system Xenopus laevis N2 - Der eukaryotische Initiationsfaktor 5A (eIF5A) ist evolutionär hoch konserviert und besitzt als einzig bislang bekanntes Protein die Aminosäuremodifikation Hypusin. Obwohl eIF5A ubiquitär exprimiert wird, sind die zellulären Funktionen von eIF5A noch weitgehend unklar. Hypusininhibitoren konnten die Oberflächenexpression von CD83 die CD83 mRNA im Zellkern dendritischer Zellen anreichern und folglich die Oberflächenexpression von CD83 verhindern konnten, wurde eine Beteiligung von eIF5A beim nukleozytoplasmatischen Export der CD83 mRNA vermutet. Weiterhin ist bekannt, dass HuR, ein Protein der ELAV-Familie, an ein cis-aktives RNA-Element mit einer ausgeprägten Sekundärstruktur innerhalb der kodierenden Sequenz der CD83 mRNA bindet. Während die Bindung von HuR an AU-reiche Elemente in der 3UTR bestimmter Transkripte zu deren Stabilisierung führt, wird die Stabilität von CD83-Transkripten durch die Interaktion mit HuR jedoch nicht beeinflusst. In dieser Arbeit wurden Mikroinjektionsstudien in Xenopus laevis-Oozyten zum nukleozytoplasmatischen Export von CD83 mRNA durchgeführt. Es konnte gezeigt werden, dass die charakteristische Sekundärstruktur des HuR-Response-Elements essentiell für den Kernexport von CD83-Transkripten ist. HuR wurde zudem als Bindungspartner von eIF5a identifiziert. Inhibitorische Antikörper sowohl gegen HuR als auch eIF5A waren in der Lage, den Export von CD83-Transkripten zu inhibieren. Während die meisten mRNAs durch den TAP/NXT1-vermittelten Exportweg in das Zytoplasma transportiert werden, transloziert CD83 mRNA CRM1-vermittelt, da der Export durch den CRM1-Inhibitor Leptomycin B gehemmt werden konnte. Oozytentypischer TFIIIA, ebenfalls ein Interaktionspartner von eIF5A, ist in jungen Xenopus-Oozyten sowohl bei der RNA-Polymerase III-abhängigen Transkription von 5S rRNA als auch am nukleozytoplasmatischem Export und der Lagerung von 5S rRNA im Zytoplasma beteiligt. Aufgrund der Parallele zwischen dem HIV-1-Rev vermittelten HIV-1-mRNA-Export und dem TFIIIA-vermittelten 5S rRNA-Export, wurde der Export von TFIIIA im Hinblick auf eine Beteiligung von eIF5A als Kofaktor analysiert. In Xenopus-Oozyten wurde TFIIIA an den nukleoplasmatischen Filamenten der Kernporenkomplexe detektiert. Weiterhin konnte durch den Einsatz des spezifischen CRM1-Inhibitors Leptomycin B bestätigt werden, dass TFIIIA, welches ein leucinreiches Kernexportsignal enthält, mittels CRM1 exportiert wird. Im Overlay-Blot-Assay konnte gezeigt werden, dass eIF5A mit TFIIIA interagiert. Außerdem deuten Mikroinjektionsexperimente darauf hin, dass eIF5A, wie beim HIV-1-Rev-vermittelten Export, auch beim TFIIIA-Export als essentieller Kofaktor involviert ist. Ein weiterer bekannter Bindungspartner von eIF5A ist Aktin, das im Zellkern an verschiedenen Exportprozessen sowie der RNA-Polymerase I-, II- und III-abhängigen Transkription beteiligt ist. Im Gegensatz zu Aktin wurde die Existenz des Aktinpartners Myosin im Zellkern erst vor kurzem realisiert. In dieser Arbeit konnten durch bioinformatische Analysen gezeigt werden, dass Kernmyosin IC bei Vertebraten weit verbreitet ist. Es wurde auch bei Xenopus laevis identifiziert. Im Vergleich zu Myosin IC fand sich ein zusätzlicher Aminoterminus aus 16 Aminosäuren, welcher als Kernlokalisationssignal fungiert. In Oozyten von Xenopus laevis konnte Kernmyosin IC, ähnlich wie RNA-Polymerase II, an den lateralen Schleifen der Lampenbürstenchromosomen dargestellt werden. Inhibierende Kernmyosinantikörper führten nach Mikroinjektion in den Zellkern von Xenopus-Oozyten zu einer kompletten Retraktion der meisten lateralen transkriptionsaktiven Schleifen sowie zu einer Verkürzung der Chromosomenachsen. konnte Kernmyosin IC vor allem im Nukleoluskern detektiert werden, wo es partiell mit RNA-Polymerase I und Fibrillarin kolokalisierte. In amplifizierten Nukleolen führte eine Transkriptionsinhibition mit Aktinomycin D zu einer Umverteilung des Kernmyosin IC zusammen mit der RNA-Polymerase I und der rDNA. Nach Injektion inhibierender Kernmyosinantikörper kam es zu einem massiven architektonischen Umbau der Nukleolen. Im Gegensatz zu den Nukleolen von somatischen Xenopus-Zellen war ein BrUTP-Einbau in amplifizierte Nukleolen jedoch noch möglich. Wie für Kernaktin bereits beschrieben, konnte auch Kernmyosin IC an den nukleoplasmatischen Filamenten der Kernporenkomplexe von Xenopus laevis-Ooyzten dargestellt werden. Da Aktin als essentieller Kofaktor an Exportprozessen beteiligt ist, sollte in Mikroinjektionsexperimenten auch eine Beteiligung von Kernmyosin IC beim Kernexport überprüft werden. Antikörper gegen ein Epitop in der Myosinkopfdomäne des Kernmyosin IC (XNMIC #42) waren im Gegensatz zu Antikörpern, die den charakteristischen Aminoterminus aus 16 Aminosäuren erkennen (XNMIC #54), in der Lage, einen CRM1-vermittelten Proteinexport zu inhibieren. N2 - Eucaryotic initiation factor 5A (eIF5A), an evolutionary highly conserved protein, is the only protein known to contain the unique amino acid modification hypusine. Even if eIF5A is ubiquitous expressed, cellular functions of eIF5A remain widely obscure. Hypusine inhibitors are able to enrich CD83 transcripts in the cell nucleus of dendritic cells and subsequently prevent surface expression of CD83. Therefore, a role of eIF5A in nucleocytoplasmic export of CD83 mRNA was supposed. Furthermore, HuR, a member of the ELAV family, binds CD83 transcripts on a specific cis-active RNA element, which forms a characteristic secondary structure. Whereas binding of HuR on AU-rich elements in the 3-UTR of certain transcripts leads to their stability, binding of HuR on CD83 transcripts in the coding region does not. In this thesis, microinjection experiments were performed in Xenopus laevis oocytes to elucidate the nucleocytoplasmic export of CD83 mRNA. The characteristic secondary structure of the HuR response element could be demonstrated as crucial for the nucleocytoplasmic export of CD83 transcripts. Furthermore, HuR could be identified as a binding partner of eIF5A. Inhibitory antibodies against both HuR and eIF5A were able to inhibit nuclear export of CD83 mRNA. While the bulk of cellular mRNAs leaves the nucleus with the aid of TAP/NXT1, CD83 mRNA is exported via the CRM1-mediated pathway, as could be demonstrated by export inhibition using specific CRM1 inhibitor leptomycin B. Oocyte type TFIIIA, another interaction partner of eIF5A, promotes RNA-Polymerase III-dependent transcription, nucleocytoplasmic translocation as well as storage of 5S rRNA in immature Xenopus oocytes. Due to a parallel of HIV-1 Rev mediated HIV-1 mRNA export and TFIIIA mediated 5S rRNA export, nuclear export of TFIIIA was examined with respect to a possible role of eIF5A as a cofactor. In Xenopus oocytes, TFIIIA could be detected on nucleoplasmic filaments of the nuclear pore complexes. Moreover, treatment with specific CRM1 inhibitor Leptomycin B comfirmed nucleocytoplasmic export of leucin-rich nuclear export signal containing TFIIIA via CRM1. Interaction of eIF5A with TFIIIA could be demonstrated using overlay blot assay. In microinjection experiments, eIF5A also seems to be an essential cofactor in TFIIIA export, parallel to HIV-1-Rev mediated export. Actin, a further known binding partner of eIF5A, is involved in diverse nuclear export pathways and RNA-Polymerase I, II and III dependent transcription. In contrast to actin, its partner myosin was only recently discovered undeniable in the cell nucleus. Nuclear myosin IC is a member of the Myosin I family of non filamentous, unconventional myosins. In this thesis, bioinformatical analysis displayed a wide distribution in vertebrates. Nuclear myosin IC is also present in Xenopus laevis. Compared to myosin IC, it contains a specific 16 amino acid aminoterminus, which acts as a nuclear localization signal. In Xenopus laevis oocytes, nuclear myosin IC, as well as RNA-polymerase II, localized on the lateral transcriptional active loops of lampbrush chromosomes. Inhibitory antibodies against nuclear myosin lead to complete retraction of most of the lateral transcriptional active loops and to a shortening of the chromosome axes. After inhibition of transcription in amplified nucleoli, using actinomycin D, nuclear myosin IC was relocated together with RNA-polymerase I and rDNA. Injection of inhibitory antibodies against nuclear myosin resulted in a massive architectural alteration of the amplified nucleoli. In contrast to nucleoli of somatic Xenopus cells, BrUTP-incorporation in amplified nucleoli was still possible. As already published for nuclear actin, nuclear myosin IC could also be detected on nucleoplasmic filaments of nuclear pore complexes in Xenopus laevis oocytes. As actin is an essential cofactor in export pathways, a possible role for nuclear myosin IC in nuclear export was examined by microinjection experiments. Antibodies against an epitop in the nuclear myosin head domain (XNMIC #42) were able to inhibit a CRM1 mediated protein export, whereas antibodies against the specific 16 amino acid terminus (XNMIC #54) failed. KW - RNS KW - Kernhülle KW - Stofftransport KW - Glatter Krallenfrosch KW - eIF5A KW - TFIIIA KW - CD83mRNS KW - Kernmyosin KW - eIF5A KW - TFIIIA KW - CD83mRNA KW - nuclear myosin Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37474 ER - TY - THES A1 - Schneider, Hannah T1 - Untersuchung der drei Isoformen des Elongationsfaktors 1A von Xenopus laevis: 42Sp50 versus EF1A-1/EF1A-2 T1 - Analysis of the three isoforms of elongation factor 1A of Xenopus laevis: 42Sp50 versus EF1A-1/EF1A-2 N2 - Im ersten Teil der vorliegenden Arbeit wurde der monoklonale Antikörper IV´D4 biochemisch charakterisiert und die zelluläre Verteilung des Antigens mittels Immunfluoreszenz-Mikroskopie untersucht. Durch elektronenmikroskopische Lokalisierungsexperimente wurde gezeigt, dass es sich dabei um Nuage handelt. Obwohl der Antikörper eine oozytenspezifische Struktur markierte, färbte er in der Immunfluoreszenz überraschenderweise auch somatische Xenopus Kulturzellen (A6 und XTC) an. Als nächstes wurde das Antigen von IV´D4 und damit eine neue Proteinkomponente der Nuage identifiziert. Durch Immunblots von prävitellogenen Oozyten und Expression rekombinanter Proteine wurde festgestellt, dass der Antikörper das Protein 42Sp50 erkennt. Es war nicht auszuschließen, dass die Nuage lediglich die somatischen EF1A-Isoformen akkumulieren. Tatsächlich werden alle drei EF1A-Isoformen in Oozyten exprimiert, wie RT-PCR-Experimente belegten. Die ubiquitäre Expression und hohe Sequenzverwandtschaft der beiden traditionellen Xenopus EF1A-Isoformen mit denen der Säuger veranlassten uns, die Nomenklatur anzugleichen (Xenopus EF1A-1 für EF1A-S und EF1A-2 für EF1A-O). Durch Mikroinjektion entsprechender mRNAs wurden Fluoreszenz-EF1A Fusionsproteine (gekoppelt an EGFP, monomeres DsRed oder monomeres RFP) in lebenden Oozyten exprimiert und lokalisiert. Neben 42Sp50 wurde auch die zweite Proteinkomponente der 42S Partikel, 42Sp43, in Form von fluoreszierenden Fusionsproteinen in Oozyten exprimiert und lokalisiert. In einem weiteren Teil der Arbeit wurde die Dynamik der Nuage untersucht. Dazu wurden Versuche mit verschiedenen Inhibitoren durchgeführt. Es sollte überprüft werden, ob die Hemmung unterschiedlicher zellulärer Prozesse Einfluss auf die strukturelle Organisation der Nuage hat. Zu Beginn der Arbeit lagen keine Kenntnisse darüber vor, in welchem Zellkompartiment das Assembly der 42S RNPs stattfindet. Zunächst wurden deshalb die beiden Proteine 42Sp50 und 42Sp43 als fluoreszierende Fusionsproteine in prävitellogenen Ooyzten koexprimiert. Ein eindeutiger Nachweis der spezifischen Interaktion zwischen 42Sp43 und 42Sp50 gelang insbesondere durch die transiente Expression der entsprechenden fluoreszenzmarkierten Proteinpaare in somatischen Kulturzellen (Xenopus A6 und Säuger COS-7 Zellen). Die hier beschriebene Koexpression von Proteinpaaren mit unterschiedlichen Fluoreszenzfarbstoffen in Säugerzellen stellt eine einfache Methode dar, um in vivo Interaktionen mikroskopisch sichtbar zu machen. Damit sollte es möglich sein, durch gezielte Mutationen und Deletionen von 42Sp50 und 42Sp43 diejenigen Aminosäuren und strukturellen Determinanten zu identifzieren, die bei der spezifischen Interaktion und damit beim Assembly der 42S Partikel eine Rolle spielen. N2 - In the first part of the present work the monoclonal antibody IV´D4 was characterized biochemically and the cellular distribution of the antigen was analyzed using immunofluorescence microscopy. Electron microscopic localization experiments identified them as nuage. Although the antibody marked an oocyte specific structure, immunofluorescence surprisingly showed that it also stained somatic Xenopus culture cells (A6 and XTC). Next, the antigen recognized by IV´D4 was identified as a new protein component of nuage. By immunoblotting of previtellogenic oocytes and by expression of recombinant proteins it was observed that the antibody recognizes the protein 42Sp50. Hence, it was impossible to obtain evidence that nuage really contain 42Sp50 and therefore are sites of 42S RNP formation. It could not be excluded that nuage accumulate only somatic EF1A-isoforms. RT-PCR experiments demonstrated that in fact, all three isoforms are expressed in oocytes. The ubiquitous expression and the high sequence similarity of traditional Xenopus EF1A-isoforms prompted us to adopt the nomenclature (Xenopus EF1A-1 for EF1A-S and EF1A-2 for EF1A-2). Fluorescent EF1A fusion proteins (linked to EGFP, monomeric DsRed and monomeric RFP) were expressed and localized in living oocytes by microinjection of accordant mRNAs. Beside 42Sp50, the second protein component of the 42S particle, 42Sp43, was expressed and localized as fluorescent fusion protein in oocytes. The dynamics of nuage were analyzed in another part of the present work. For that purpose, experiments were carried out with different inhibitors. It was analyzed if the structural organization of nuage was influenced by the inhibition of different cellular processes. At the beginning of the present work it was unknown in which compartment of the cell the assembly of 42S RNPs takes place. Therefore, both proteins of the 42S particle were coexpressed in previtellogenic Xenopus oocytes as fluorescent fusion proteins. Distinct evidence for a specific interaction between 42Sp43 and 42Sp50 was obtained by transient expression of the fluorescence labeled protein pairs in somatic cuture cells (Xenopus A6 and mammalian COS7 cells). The described coexpression of protein pairs with different fluorescent dyes in mammalian cells describes a simple method to visualize in vivo interactions microscopically. By analyzing specific mutations and deletions of 42Sp50 and 42Sp43 it should be possible to identify those amino acids and structural determinants which are responsible for specific interactions important for the assembly of 42S particles. KW - Glatter Krallenfrosch KW - Elongationsfaktor 1A KW - Isoformen KW - Nuage KW - Elongation factor 1A KW - Nuage Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36124 ER -