TY - THES A1 - Kirchmaier, Bettina Carmen T1 - Characterization of the Popeye domain containing gene family in zebrafish T1 - Charakterisierung der Popeye domain containing Genfamilie im Zebrafisch N2 - The Popeye domain containing (Popdc) gene family of membrane proteins is predominantly expressed in striated and smooth muscle tissues and has been shown to act as novel cAMP-binding proteins. In mice, loss of Popdc1 and Popdc2, respectively, affects sinus node function in the postnatal heart in an age and stress-dependent manner. In this thesis, I examined gene expression pattern and function of the Popdc gene family during zebrafish development with an emphasis on popdc2. Expression of the zebrafish popdc2 was exclusively present in cardiac and skeletal muscle during cardiac development, whereas popdc3 was expressed in striated muscle tissue and in distinct regions of the brain. In order to study the function of these genes, an antisense morpholino-based knockdown approach was used. Knockdown of popdc2 resulted in aberrant development of facial and tail musculature. In the heart, popdc2 morphants displayed irregular ventricular contractions with 2:1 and 3:1 ventricular pauses. Recordings of calcium transients using a transgenic indicator line Tg(cmlc2:gCaMP)s878 and selective plane illumination microscopy (SPIM) revealed the presence of an atrioventricular (AV) block in popdc2 morphants as well as a complete heart block. Interestingly, preliminary data revealed that popdc3 morphants developed a similar phenotype. In order to find a morphological correlate for the observed AV conduction defect, I studied the structure of the AV canal in popdc2 morphants using confocal analysis of hearts of the transgenic line Tg(cmlc2:eGFP-ras)s883, which outlines individual cardiac myocytes with the help of membrane-localized GFP. However, no evidence for morphological alterations was obtained. To ensure that the observed arrhythmia phenotype in the popdc2 morphant was based on a myocardial defect and not caused by defective valve development, live imaging was performed revealing properly formed valves. Thus, in agreement with the data obtained in knockout mice, popdc2 and popdc3 genes in zebrafish are involved in the regulation of cardiac electrical activity. However, both genes are not required for cardiac pacemaking, but they play essential roles in AV conduction. In order to elucidate the biological importance of cAMP-binding, wild type Popdc1 as well as mutants with a significant reduction in binding affinity for cAMP in vitro were overexpressed in zebrafish embryos. Expression of wild type Popdc1 led to a cardiac insufficiency phenotype characterized by pericardial edema and venous blood retention. Strikingly, the ability of the Popdc1 mutants to induce a cardiac phenotype correlated with the binding affinity for cAMP. These data suggest that cAMP-binding represents an important biological property of the Popdc protein family. N2 - Die Popeye domain containing (Popdc) Gene kodieren für eine Familie von Membranproteinen, die vorwiegend in der gestreiften und glatten Muskulatur exprimiert werden und in der Lage sind cAMP zu binden. In Mäusen resultiert der Verlust von Popdc1 oder Popdc2 in einer stressinduzierten Sinusknotendysfunktion, die sich altersabhängig entwickelt. In meiner Dissertation habe ich das Expressionsmuster und die Funktion der Popdc Genfamilie mit Schwerpunkt auf dem popdc2-Gen im Zebrafisch untersucht. Das popdc2-Gen im Zebrafisch wurde ausschließlich in der Herz- und Skelettmuskulatur exprimiert, während popdc3 sowohl in der quergestreiften Muskulatur, als auch im Gehirn exprimiert wurde. Um die Funktion dieser Gene zu untersuchen, wurde die Prozessierung der prä-mRNA mit Hilfe von Morpholinos unterdrückt, die gegen die Spleißdonor bzw. -akzeptorsequenzen von popdc2 und popdc3 gerichtet waren. Das Fehlen von popdc2 im Zebrafisch resultierte in einer Fehlentwicklung der Gesichts- und Schwanzmuskulatur. Im Herzen der popdc2-Morphanten waren ventrikuläre Überleitungsstörungen mit einem 2:1 oder 3:1 Rhythmus zu beobachten. Analysen der Calciumfreisetzung mittels SPIM (selective plane illumination microscopy) in der transgenen Zebrafischlinie Tg(cmlc2:gCaMP)s878, die einen fluoreszierenden Calciumindikator exprimiert, zeigten in den popdc2-Morphanten einen AV-Block bis hin zum kompletten Herzblock. Interessanterweise ergaben vorläufige Analysen in popdc3-Morphanten einen ähnlichen Phänotyp. Um eine mögliche morphologische Ursache der beobachteten AV-Überleitungsstörung zu finden, habe ich die Struktur des AV-Kanals von popdc2-Morphanten mit Hilfe der transgenen Zebrafischlinie Tg(cmlc2:eGFP-rass883) und konfokaler Mikroskopie untersucht. Allerdings konnte ich kein Anzeichen für morphologische Veränderungen erkennen. Um sicherzugehen, dass der beobachtete Rhythmusphänotyp der popdc2-Morphanten nicht auf einer myokardialen Störung beruht oder auf einem Defekt bei der Klappenentwicklung, wurden zusätzlich Lebendaufnahmen angefertigt, die zeigten, dass die Klappen normal entwickelt waren. In Übereinstimmung mit den Daten aus den Knockout-Mäusen haben die popdc2- und popdc3-Gene auch im Zebrafisch eine wichtige Funktion bei der elektrischen Reizleitung im Herzen. Allerdings sind die beiden Gene für die Erregungsbildung im Sinusknoten nicht essentiell, sondern werden für die Signalübertragung im AV-Kanal benötigt. Um die biologische Signifikanz der cAMP-Bindung zu untersuchen, wurden Wildtyp-Popdc1 und Punktmutanten, die eine Reduktion in der cAMP-Bindung aufweisen, nach RNA-Injektion in Zebrafischembryonen überexprimiert. Die Injektion von Wildtyp-Popdc1 induzierte eine embryonale Herzinsuffizienz, die durch perikardiales Ödem und venösen Blutstau charakterisiert war. Die Fähigkeit der Popdc1-Punktmutanten, einen Herzphänotyp nach Überexpression zu induzieren, war direkt korreliert mit der Bindungsaffinität für cAMP. Diese Daten lassen den Schluss zu, dass die Fähigkeit der cAMP-Bindung eine wichtige biologische Eigenschaft der Popdc-Proteinfamilie darstellt. KW - Zebrabärbling KW - Genexpression KW - Herzmuskel KW - Herz KW - Popdc Genfamilie KW - heart KW - popdc gene family Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49413 ER - TY - THES A1 - Jauch, Mandy T1 - Die Serin/Arginin Proteinkinase 79D (SRPK79D) von Drosophila melanogaster und ihre Rolle bei der Bildung Aktiver Zonen von Synapsen T1 - The serine/arginine protein kinase 79D (SRPK79D) of Drosophila melanogaster and its role in the formation of active zones of synapses N2 - Synapsen als Stellen der Kommunikation zwischen Neuronen besitzen spezialisierte Bereiche – Aktive Zonen (AZs) genannt –, die aus einem hoch komplexen Netzwerk von Proteinen aufgebaut sind und die Maschinerie für den Prozess der Neurotransmitter-Ausschüttung und das Vesikel-Recycling beinhalten. In Drosophila ist das Protein Bruchpilot (BRP) ein wichtiger Baustein für die T-förmigen Bänder („T-Bars“) der präsynaptischen Aktiven Zonen. BRP ist notwendig für eine intakte Struktur der Aktiven Zone und eine normale Exocytose von Neurotransmitter-Vesikeln. Auf der Suche nach Mutationen, welche die Verteilung von Bruchpilot im Gewebe beeinträchtigen, wurde eine P-Element-Insertion im Gen CG11489 an der Position 79D identifiziert, welches eine Kinase kodiert, die einen hohen Grad an Homologie zur Familie der SR Proteinkinasen (SRPKs) von Säugern aufweist. Die Mitglieder dieser Familie zeichnen sich durch eine evolutionär hoch konservierte zweigeteilte Kinasedomäne aus, die durch eine nicht konservierte Spacer-Sequenz unterbrochen ist. SRPKs phosphorylieren SR-Proteine, die zu einer evolutionär hoch konservierten Familie Serin/Arginin-reicher Spleißfaktoren gehören und konstitutive sowie alternative Spleißprozesse steuern und damit auf post-transkriptioneller Ebene die Genexpression regulieren. Mutation des Srpk79D-Gens durch die P-Element-Insertion (Srpk79DP1) oder eine Deletion im Gen (Srpk79DVN Nullmutante) führt zu auffälligen BRP-Akkumulationen in larvalen und adulten Nerven. In der vorliegenden Arbeit wird gezeigt, dass diese BRP-Akkumulationen auf Ultrastruktur-Ebene ausgedehnten axonalen Agglomeraten elektronendichter Bänder entsprechen und von klaren Vesikeln umgeben sind. Charakterisierung durch Immuno-Elektronenmikroskopie ergab, dass diese Strukturen BRP-immunoreaktiv sind. Um die Bildung BRP-enthaltender Agglomerate in Axonen zu verhindern und damit eine intakte Gehirnfunktion zu gewährleisten, scheint die SRPK79D nur auf niedrigem Niveau exprimiert zu werden, da die endogene Kinase mit verschiedenen Antikörpern nicht nachweisbar war. Wie in anderen Arbeiten gezeigt werden konnte, ist die Expression der PB-, PC- oder PF-Isoform der vier möglichen SRPK79D-Varianten, die durch alternativen Transkriptionsstart in Exon eins beziehungsweise drei und alternatives Spleißen von Exon sieben zustande kommen, zur Rettung des Phänotyps der BRP-Akkumulation im Srpk79DVN Nullmutanten-Hintergrund ausreichend. Zur Charakterisierung der Rescue-Eigenschaften der SRPK79D-PE-Isoform wurde mit der Klonierung der cDNA in einen UAS-Vektor begonnen. Offenbar beruht die Bildung der axonalen BRP-Agglomerate nicht auf einer Überexpression von BRP in den betroffenen Neuronen, denn auch bei reduzierter Expression des BRP-Proteins im Srpk79DVN Nullmutanten-Hintergrund entstehen die BRP-Agglomerate. In Köpfen der Srpk79DVN Nullmutante ist die Gesamtmenge an Bruchpilot-Protein im Vergleich zum Wildtyp nicht deutlich verändert. Auch die auf Protein-Ebene untersuchte Expression der verschiedenen Isoformen der präsynaptischen Proteine Synapsin, Sap47 und CSP weicht in der Srpk79DVN Nullmutante nicht wesentlich von der Wildtyp-Situation ab, sodass sich keine Hinweise auf verändertes Spleißen der entsprechenden prä-mRNAs ergeben. Jedes der sieben bekannten SR-Proteine von Drosophila ist ein potentielles Zielprotein der SRPK79D. Knock-down-Experimente für die drei hier untersuchten SR-Proteine SC35, X16/9G8 und B52/SRp55 im gesamten Nervensystem durch RNA-Interferenz zeigten allerdings keinen Effekt auf die Verteilung von BRP im Gewebe. Hinsichtlich der Flugfähigkeit der Tiere hat die Srpk79DVN Nullmutation keinen additiven Effekt zum Knock-down des BRP-Proteins, denn die Doppelmutanten zeigten bei der Bestimmung des Anteils an flugunfähigen Tieren vergleichbare Werte wie die Einzelmutanten, die entweder die Nullmutation im Srpk79D-Gen trugen, oder BRP reduziert exprimierten. Vermutlich sind Bruchpilot und die SR Proteinkinase 79D somit Teil desselben Signalwegs. Durch Doppelfärbungen mit Antikörpern gegen BRP und CAPA-Peptide wurde abschließend entdeckt, dass Bruchpilot auch im Median- und Transvers-Nervensystem (MeN/TVN) von Drosophila zu finden ist, welche die Neurohämal-Organe beherbergen. Aufgabe dieser Organe ist die Speicherung und Ausschüttung von Neuropeptid-Hormonen. Daher ist zu vermuten, dass das BRP-Protein neben Funktionen bei der Neurotransmitter-Exocytose möglicherweise eine Rolle bei der Ausschüttung von Neuropeptiden spielt. Anders als in den Axonen der larvalen Segmental- und Intersegmentalnerven der Srpk79DVN Nullmutante, die charakteristische BRP-Agglomerate aufweisen, hat die Mutation des Srpk79D-Gens in den Axonen der Va-Neurone, die das MeN/TVN-System bilden, keinen sichtbaren Effekt auf die Verteilung von Brp, denn das Muster bei Färbung gegen BRP weist keine deutlichen Veränderungen zum Wildtyp auf. N2 - Synapses as sites of communication between neurons contain specialized regions termed active zones (AZs) which are composed of a highly complex network of proteins comprising the exocytotic machinery for neurotransmitter release and vesicle recycling. In Drosophila the Bruchpilot (BRP) protein is an important building block of the T-shaped ribbons („T-bars“) at presynaptic active zones. By screening for mutations affecting the tissue distribution of Bruchpilot, a P-transposon insertion in the Srpk gene at the position 79D has been identified (Srpk79D, CG11489). This gene codes for a kinase which shows high homology to the mammalian family of serine/arginine protein kinases (SRPKs). Members of this family have an evolutionarily highly conserved bipartite kinase domain in common which is separated by a non-conserved spacer sequence. SRPKs phosphorylate SR proteins, an evolutionarily highly conserved family of serine/arginine-rich splicing factors that control the processes of constitutive and alternative splicing. Mutation of the Srpk79D gene caused by the P-element insertion (Srpk79DP1) or by a deletion in the gene (Srpk79DVN null mutant) leads to conspicuous accumulations of BRP in larval and adult axons. This thesis shows that these BRP accumulations at the ultrastructural level correspond to extensive axonal agglomerates of electron-dense ribbons surrounded by clear vesicles. Using immuno electron microscopy, these accumulation were characterized as BRP immuno-reactive structures. To prevent the assembly of BRP containing agglomerates in axons and to maintain intact brain function the SRPK79D seems to be expressed only at low levels because the endogenous kinase was not detectable using various antibodies. It was shown in other thesis that the expression of the PB, PC or PF isoform of the four possible SRPK79D variants resulting from two alternative transcription start sites in exon one and three, respectively, and alternative splicing of exon seven is sufficient to rescue the phenotype of BRP accumulation in the Srpk79DVN null-mutant background. Cloning of the cDNA for the SRPK79D-PE isoform into a UAS vector has been started in order to characterize the ability of this isoform to rescue the BRP-phenotype. It seems as if the formation of axonal BRP agglomerates is not due to BRP overexpression in the affected neurons as was shown by reduced expression of the BRP protein in the Srpk79DVN null-mutant background which still leads to BRP agglomerates. The overall amount of Bruchpilot protein in adult heads of the Srpk79DVN null mutant is not clearly altered compared to wild type. No clear alteration was observed between Srpk79DVN null-mutant and wild-type flies comparing the expression of different presynaptic proteins like Synapsin, Synapse-associated protein of 47 kDa (Sap47), and Cysteine string protein (CSP). The experiment does not point towards altered splicing of the corresponding pre-mRNAs. Each of the seven known SR proteins of Drosophila is a potential target protein of the SRPK79D. Pan-neuronal knock-down experiments for the three SR proteins SC35, X16/9G8, and B52/SRp55 investigated in this thesis by RNA interference did not show an effect on the tissue distribution of BRP. It was shown that the Srpk79DVN null mutation has no additive effect on the knock-down of the BRP protein regarding the flight ability of the respective animals because the double mutants showed similar values of non-flyers as each of the single mutants with either null mutation of the Srpk79D gene or knock-down of BRP. Presumably, Bruchpilot and the SR protein kinase 79D are part of the same signaling pathway. Performing double fluorescence stainings with antibodies against BRP and the CAPA peptides it was shown that Bruchpilot is also present in the median and transverse nerve system (MeN/TVN) of Drosophila containing the neurohaemal organs. These organs are responsible for storage and release of neuropeptide hormones. In contrast to the larval segmental and intersegmental nerves of the Srpk79DVN null mutant which show characteristic BRP agglomerates, mutation of the Srpk79D gene does not affect the distribution of BRP in the axons of the Va neurons which form the MeN/TVN system. The staining pattern of BRP in these nerves does not show clear alterations in the Srpk79DVN null mutant compared to wild type. The finding that BRP is present in the median and transverse nerve system opens the field for speculation of a role for the Bruchpilot protein not only in the neurotransmitter exocytosis but also in the release of neuropeptides. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - Synapse KW - Genexpression KW - Aktive Zone KW - Serin/Arginin Proteinkinase KW - SRPK KW - Bruchpilot KW - Drosophila KW - Synapse KW - Motorische Endplatte KW - Nervenzelle KW - Neurotransmitter KW - active zone KW - serine/arginine protein kinase KW - SRPK KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53974 ER - TY - THES A1 - Vainshtein, Yevhen T1 - Applying microarray‐based techniques to study gene expression patterns: a bio‐computational approach T1 - Anwendung von Mikroarrayanalysen um Genexpressionsmuster zu untersuchen: Ein bioinformatischer Ansatz N2 - The regulation and maintenance of iron homeostasis is critical to human health. As a constituent of hemoglobin, iron is essential for oxygen transport and significant iron deficiency leads to anemia. Eukaryotic cells require iron for survival and proliferation. Iron is part of hemoproteins, iron-sulfur (Fe-S) proteins, and other proteins with functional groups that require iron as a cofactor. At the cellular level, iron uptake, utilization, storage, and export are regulated at different molecular levels (transcriptional, mRNA stability, translational, and posttranslational). Iron regulatory proteins (IRPs) 1 and 2 post-transcriptionally control mammalian iron homeostasis by binding to iron-responsive elements (IREs), conserved RNA stem-loop structures located in the 5’- or 3‘- untranslated regions of genes involved in iron metabolism (e.g. FTH1, FTL, and TFRC). To identify novel IRE-containing mRNAs, we integrated biochemical, biocomputational, and microarray-based experimental approaches. Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Methods In this project response to the iron treatment was examined under different conditions using bioinformatical methods. This would improve our understanding of an iron regulatory network. For these purposes we used microarray gene expression data. To identify novel IRE-containing mRNAs biochemical, biocomputational, and microarray-based experimental approaches were integrated. IRP/IRE messenger ribonucleoproteins were immunoselected and their mRNA composition was analysed using an IronChip microarray enriched for genes predicted computationally to contain IRE-like motifs. Analysis of IronChip microarray data requires specialized tool which can use all advantages of a customized microarray platform. Novel decision-tree based algorithm was implemented using Perl in IronChip Evaluation Package (ICEP). Results IRE-like motifs were identified from genomic nucleic acid databases by an algorithm combining primary nucleic acid sequence and RNA structural criteria. Depending on the choice of constraining criteria, such computational screens tend to generate a large number of false positives. To refine the search and reduce the number of false positive hits, additional constraints were introduced. The refined screen yielded 15 IRE-like motifs. A second approach made use of a reported list of 230 IRE-like sequences obtained from screening UTR databases. We selected 6 out of these 230 entries based on the ability of the lower IRE stem to form at least 6 out of 7 bp. Corresponding ESTs were spotted onto the human or mouse versions of the IronChip and the results were analysed using ICEP. Our data show that the immunoselection/microarray strategy is a feasible approach for screening bioinformatically predicted IRE genes and the detection of novel IRE-containing mRNAs. In addition, we identified a novel IRE-containing gene CDC14A (Sanchez M, et al. 2006). The IronChip Evaluation Package (ICEP) is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip, but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls (Vainshtein Y, et al., 2010). N2 - Die Regulierung und Aufrechterhaltung der Eisen-Homeostase ist bedeutend für die menschliche Gesundheit. Als Bestandteil des Hämoglobins ist es wichtig für den Transport von Sauerstoff, ein Mangel führt zu Blutarmut. Eukaryotische Zellen benötigen Eisen zum Überleben und zum Proliferieren. Eisen ist am Aufbau von Hämo- und Eisenschwefelproteinen (Fe-S) beteiligt und kann als Kofaktor dienen. Die Aufnahme, Nutzung, Speicherung und der Export von Eisen ist zellulär auf verschiedenen molekularen Ebenen reguliert (Transkription, mRNA-Level, Translation, Protein-Level). Die iron regulatory proteins (IRPs) 1 und 2 kontrollieren die Eisen-Homeostase in Säugetieren posttranslational durch die Bindung an Iron-responsive elements (IREs). IREs sind konservierte RNA stem-loop Strukturen in den 5' oder 3' untranslatierten Bereichen von Genen, die im Eisenmetabolismus involviert sind (z.B. FTH1, FTL und TFRC). In dieser Arbeit wurden biochemische und bioinformatische Methoden mit Microarray-Experimenten kombiniert, um neue mRNAs mit IREs zu identifizieren. Genexpressionsstudien verbessern unser Verständnis über die komplexen Zusammenhänge in genregulatorischen Netzwerken. Das komplexe Design von Microarrays, deren Produktion und Manipulation sind dabei die limitierenden Faktoren bezüglich der Datenqualität. Die Verwendung von angepassten DNA Microarrays verbessert häufig die Datenqualität, falls entsprechende Analysemöglichkeiten für diese Arrays existieren. Methoden Um unser Verständnis von eisenregulierten Netzwerken zu verbessern, wurde im Rahmen dieses Projektes die Auswirkung einer Behandlung mit Eisen bzw. von Knockout Mutation unter verschiedenen Bedingungen mittels bioinformatischer Methoden untersucht. Hierfür nutzen wir Expressionsdaten aus Microarray-Experimenten. Durch die Verknüpfung von biochemischen, bioinformatischen und Microarray Ansätzen können neue Proteine mit IREs identifiziert werden. IRP/IRE messenger Ribonucleoproteine wurden immunpräzipitiert. Die Zusammensetzung der enthaltenen mRNAs wurde mittels einem IronChip Microarray analysiert: Für diesen Chip wurden bioinformatisch Gene vorhergesagt, die IRE-like Motive aufweisen. Der Chip wurde mit solchen Oligonucleotiden beschichtet und durch Hybridisierung überprüft, ob die präzipitierten mRNA sich hieran binden. Die Analyse der erhaltenen Daten erfordert ein spezialisiertes Werkzeug um von allen Vorteilen der angepassten Microarrays zu profitieren. Ein neuer Entscheidungsbaum-basierter Algorithmus wurde in Perl im IronChip Evaluation Package (ICEP) implementiert. Ergebnisse Aus großen Sequenz-Datenbanken wurden IRE-like Motive identifiziert. Dazu kombiniert der Algorithmus, insbesondere RNA-Primärsequenz und RNA-Strukturdaten. Solche Datenbankanalysen tendieren dazu, eine große Anzahl falsch positiver Treffer zu generieren. Daher wurden zusätzliche Bedingungen formuliert, um die Suche zu verfeinern und die Anzahl an falsch positiven Treffer zu reduzieren. Die angepassten Suchkriterien ergaben 15 IRE-like Motive. In einem weiteren Ansatz verwendeten wir eine Liste von 230 IRE-like Sequenzen aus UTR-Datenbanken. Daraus wurden 6 Sequenzen ausgewählt, die auch im unteren Teil stabil sind (untere Helix über 6 bp stabil). Die korrespondierenden Expressed Sequence Tags (ESTs) wurden auf die humane oder murine Version des IronChips aufgetragen. Die Microarray Ergebnisse wurden mit dem ICEP Programm ausgewertet. Unsere Ergebnisse zeigen, dass die Immunpräzipitation mit anschließender Microarrayanalyse ein nützlicher Ansatz ist, um bioinformatisch vorhergesagte IRE-Gene zu identifizieren. Darüber hinaus ermöglicht uns dieser Ansatz die Detektion neuer mRNAs, die IREs enthalten, wie das von uns gefundene Gen CDC14A (Sanchez et al., 2006). ICEP ist ein optimiertes Programmpaket aus Perl Programmen (Vainshtein et al., BMC Bioinformatics, 2010). Es ermöglicht die einfache Auswertung von Microarray Daten mit dem Fokus auf selbst entwickelten Microarray Designs. ICEP diente für die statistische und bioinformatische Analyse von selbst entwickelten IronChips, kann aber auch leicht an die Analyse von oligonucleotidbasierten oder cDNA Microarrays adaptiert werden. ICEP nutzt einen Entscheidungsbaum-basierten Algorithmus um die Qualität zu bewerten und führt eine robuste Analyse basierend auf Chipeigenschaften, wie mehrfachen Wiederholungen, Signal/Rausch Verhältnis, Hintergrund und Negativkontrollen durch. KW - Microarray KW - Genexpression KW - Bioinformatik KW - geneexpression KW - microarrays KW - IronChip KW - ICEP Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51967 ER -