TY - THES A1 - Simann, Meike T1 - Aufklärung der Effekte von Fibroblasten-Wachstumsfaktor 1 und 2 auf die Adipogenese und Osteogenese von primären humanen Knochenmark-Stroma-Zellen T1 - Elucidation of fibroblast growth factor 1 and 2 effects on the adipogenesis and osteogenesis of primary human bone marrow stromal cells N2 - Regulating and reverting the adipo-osteogenic lineage decision of trabecular human bone marrow stromal cells (hBMSCs) represents a promising approach for osteoporosis therapy and prevention. Fibroblast growth factor 1 (FGF1) and its subfamily member FGF2 were scored as lead candidates to exercise control over lineage switching processes (conversion) in favor of osteogenesis previously. However, their impact on differentiation events is controversially discussed in literature. Hence, the present study aimed to investigate the effects of these FGFs on the adipogenic and osteogenic differentiation and conversion of primary hBMSCs. Moreover, involved downstream signaling mechanisms should be elucidated and, finally, the results should be evaluated with regard to the possible therapeutic approach. This study clearly revealed that culture in the presence of FGF1 strongly prevented the adipogenic differentiation of hBMSCs as well as the adipogenic conversion of pre-differentiated osteoblastic cells. Lipid droplet formation was completely inhibited by a concentration of 25 ng/µL. Meanwhile, the expression of genetic markers for adipogenic initiation, peroxisome proliferator-activated receptor gamma 2 (PPARg2) and CCAAT/enhancer binding protein alpha (C/EBPa), as well as subsequent adipocyte maturation, fatty acid binding protein 4 (FABP4) and lipoprotein lipase (LPL), were significantly downregulated. Yet, the genetic markers of osteogenic commitment and differentiation were not upregulated during adipogenic differentiation and conversion under FGF supplementation, not supporting an event of osteogenic lineage switching. Moreover, when examining the effects on the osteogenic differentiation of hBMSCs and the osteogenic conversion of pre-differentiated adipocytic cells, culture in the presence of FGF1 markedly decreased extracellular matrix (ECM) mineralization. Additionally, the gene expression of the osteogenic marker alkaline phosphatase (ALP) was significantly reduced and ALP enzyme activity was decreased. Furthermore, genetic markers of osteogenic commitment, like the master regulator runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 4 (BMP4), as well as markers of osteogenic differentiation and ECM formation, like collagen 1 A1 (COL1A1) and integrin-binding sialoprotein (IBSP), were downregulated. In contrast, genes known to inhibit ECM mineralization, like ANKH inorganic pyrophosphate transport regulator (ANKH) and osteopontin (OPN), were upregulated. ANKH inhibition revealed that its transcriptional elevation was not crucial for the reduced matrix mineralization, perhaps due to decreased expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) that likely annulled ANKH upregulation. Like FGF1, also the culture in the presence of FGF2 displayed a marked anti-adipogenic and anti-osteogenic effect. The FGF receptor 1 (FGFR1) was found to be crucial for mediating the described FGF effects in adipogenic and osteogenic differentiation and conversion. Yet, adipogenic conversion displayed a lower involvement of the FGFR1. For adipogenic differentiation and osteogenic differentiation/conversion, downstream signal transduction involved the extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the mitogen-activated protein kinase (MAPK)/ERK kinases 1 and 2 (MEK1/2), probably via the phosphorylation of FGFR docking protein FGFR substrate 2a (FRS2a) and its effector Ras/MAPK. The c-Jun N-terminal kinase (JNK), p38-MAPK, and protein kinase C (PKC) were not crucial for the signal transduction, yet were in part responsible for the rate of adipogenic and/or osteogenic differentiation itself, in line with current literature. Taken together, to the best of our knowledge, our study was the first to describe the strong impact of FGF1 and FGF2 on both the adipogenic and osteogenic differentiation and conversion processes of primary hBMSCs in parallel. It clearly revealed that although both FGFs were not able to promote the differentiation and lineage switching towards the osteogenic fate, they strongly prevented adipogenic differentiation and lineage switching, which seem to be elevated during osteoporosis. Our findings indicate that FGF1 and FGF2 entrapped hBMSCs in a pre-committed state. In conclusion, these agents could be applied to potently prevent unwanted adipogenesis in vitro. Moreover, our results might aid in unraveling a pharmacological control point to eliminate the increased adipogenic differentiation and conversion as potential cause of adipose tissue accumulation and decreased osteoblastogenesis in bone marrow during aging and especially in osteoporosis. N2 - Die Regulation und Umkehr des adipogenen und osteogenen Commitments von trabekulären humanen Knochenmarks-Stroma Zellen (hBMSCs) stellt einen vielversprechenden Ansatz für die Prävention und Therapie der Knochenerkrankung Osteoporose dar. Der Fibroblasten-Wachstumsfaktor 1 (FGF1) und sein Proteinfamilien-Mitglied FGF2 wurden in einer vorhergehenden Studie als Hauptkandidaten bezüglich der Kontrolle einer Konversion (Schicksalsänderung) von hBMSCs in die osteogene Richtung bewertet. Der Effekt von FGF1 und FGF2 auf die Differenzierung von hBMSCs wird jedoch in der Literatur kontrovers diskutiert. Folglich zielte die aktuelle Studie darauf ab, die Effekte dieser Faktoren auf die adipogene und osteogene Differenzierung und Konversion von primären hBMSCs zu untersuchen. Außerdem sollten die nachgeschalteten Signalmechanismen aufgeklärt und die Ergebnisse abschließend bezüglich des angestrebten Therapieansatzes bewertet werden. Die vorliegende Studie zeigte eindeutig, dass die adipogene Differenzierung von hBMSCs sowie die adipogene Konversion von vordifferenzierten osteoblastischen Zellen durch die Kultur in Gegenwart von FGF1 stark inhibiert wurden. Die typische Bildung von intrazellulären Fetttropfen war bei einer Konzentration von 25 ng/µL vollständig inhibiert, während die Genexpression von frühen und späten adipogenen Markern signifikant herunterreguliert war. Die osteogenen Marker waren jedoch während der adipogenen Differenzierung und Konversion unter FGF-Zugabe nicht hochreguliert, was eine etwaige Schicksalsänderung zugunsten der osteogenen Richtung nicht unterstützte. Bei der Untersuchung der osteogenen Differenzierung von hBMSCs und der osteogenen Konversion von vordifferenzierten adipozytischen Zellen bewirkte die Zugabe von FGF1 zum Differenzierungsmedium eine deutliche Verminderung der Mineralisierung der extrazellulären Matrix (ECM). Darüber hinaus war die Genexpression der alkalischen Phosphatase (ALP) signifikant reduziert; außerdem wurde die ALP Enzymaktivität erniedrigt. Sowohl Marker des osteogenen Commitments einschließlich des osteogenen Master-Transkriptionsfaktors RUNX2 (Runt-related transcription factor 2), als auch Marker der weiterführenden osteogenen Differenzierung waren herunterreguliert. Im Kontrast dazu waren Inhibitoren der ECM-Mineralisierung hochreguliert. Die Hochregulation von ANKH (ANKH inorganic pyrophosphate transport regulator) schien hierbei jedoch keine direkte Auswirkung auf die Reduzierung der Mineralisierung zu haben; seine Wirkung wurde wahrscheinlich durch die Herunterregulation von ENPP1 (Ectonucleotide pyrophosphatase/ phosphodiesterase 1) aufgehoben. Wie FGF1 zeigte auch FGF2 eine anti-adipogene und anti-osteogene Wirkung. Der FGF Rezeptor 1 (FGFR1) war für die Weiterleitung der beschriebenen FGF-Effekte entscheidend, wobei die adipogene Konversion eine erniedrigte Beteiligung dieses Rezeptors zeigte. Bei der adipogenen Differenzierung und der osteogenen Differenzierung und Konversion waren die nachgeschalteten Signalwege ERK1/2 (Extracellular signal-regulated kinases 1 and 2) bzw. MEK1/2 (Mitogenactivated protein kinase (MAPK)/ ERK kinases 1 and 2) involviert, vermutlich über eine Phosphorylierung des FGFR Substrats FRS2a (FGFR substrate 2a) und der Ras/MAP Kinase. Im Gegensatz dazu waren die c-Jun N-terminale Kinase (JNK), die p38-MAP Kinase und die Proteinkinase C (PKC) nicht an der Weiterleitung des FGF-Signals beteiligt. Sie zeigten sich jedoch, in Übereinstimmung mit der aktuellen Literatur, verantwortlich für das Ausmaß der adipogenen bzw. osteogenen Differenzierung selbst. Zusammenfassend war die vorliegende Studie nach unserem besten Wissen die erste, die den starken Einfluss von FGF1 und FGF2 parallel sowohl auf die adipogene als auch die osteogene Differenzierung und Konversion von primären hBMSCs untersucht hat. Sie zeigte deutlich, dass, obwohl beide FGFs nicht die Differenzierung und Konversion zum osteogenen Zellschicksal hin unterstützen konnten, sie dennoch wirkungsvoll die adipogene Differenzierung und Konversion verhinderten, die während der Osteoporose erhöht zu sein scheinen. Unsere Ergebnisse lassen den Schluss zu, dass hBMSCs durch FGF1 und FGF2 in einem Stadium vor dem Schicksals-Commitment festgehalten werden. Folglich könnten diese Proteine verwendet werden, um eine ungewollte Adipogenese in vitro zu verhindern. Außerdem könnten unsere Ergebnisse helfen, einen pharmakologischen Kontrollpunkt zur Eliminierung der gesteigerten adipogenen Differenzierung und Konversion aufzudecken, welche potentielle Gründe für die Fettakkumulation und die reduzierte Osteoblastogenese im Knochenmark während des Alterns und besonders in der Osteoporose sind. KW - Mesenchymzelle KW - Genexpression KW - Fibroblastenwachstumsfaktor KW - Osteoporose KW - Fettzelle KW - Bone marrow stromal cell (BMSC) KW - Osteogenesis KW - Adipogenesis KW - Differentiation KW - adipocytes KW - Mesenchymale Stammzelle Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119322 ER - TY - THES A1 - Torlopp, Angela T1 - Die Rolle von FGF in der frühen Kardiogenese und Proepikardiogenese im Hühnerembryo T1 - The role of FGF signaling during early heart and proepicardium development in the chick embryo N2 - In dieser Arbeit sollte die Funktion von FGF-Signalen im Herzfeld und in der Entwicklung des Proepikards im Hühnerembryo untersucht werden. Fibroblasten-Wachstumsfaktoren (FGF) sind eine große Gruppe von Signalmolekülen und in eine Vielzahl von Entwicklungsprozessen involviert. Das Proepikard (PE), welches sich asymmetrisch auf dem rechten Sinushorn des Sinus venosus entwickelt, bildet die Grundlage des Koronargefäßsystems des Herzens. FGF-Liganden (FGF2, FGF10, FGF12) werden insbesondere in den epithelialen Zellen des Proepikards exprimiert, sowie an der sinomyokardialen Basis dieser embryonalen Progenitorpopulation. Die FGF-Rezeptoren (FGFR1, FGFR2, FGFR4) weisen ein ähnliches Expressionsmuster auf und deren Inhibition, durch spezifische Antagonisten, war der Ausgangspunkt für die funktionelle Analyse der proepikardialen FGF-Signalaktivität. Die Inhibition von FGF-Signalen in vitro führt zu einem verringerten Wachstum sowie einer erhöhten Apoptoserate in proepikardialen Explantaten, die unter serumfreien Bedingungen kultiviert wurden. Es konnte gezeigt werden, dass sowohl der Ras/MAPK- als auch der PI3-Kinase-Signalweg, beides Bestandteile der FGF-Signaltransduktion, für das Wachstum und Überleben proepikardialer Zellen verantwortlich sind. Dagegen sind FGF-Signale nicht in die Etablierung proepikardialer Identität involviert, wie die Analyse der Expression etablierter proepikardialer Markergene wie TBX18, WT1 und TBX5 nach FGF-Inhibition zeigte. Dies konnte gleichfalls durch in vivo-Experimente gezeigt werden, in denen die rechtsseitige Inhibition von FGF zu einem retardierten Proepikardwachstum führte. Weiterhin konnte gezeigt werden, dass die asymmetrische Apoptose in der sich transient entwickelnden linksseitigen Proepikardanlage auf eine frühe differentielle Expression von Apoptosegenen wie Caspase 2 zurückgeht. Diese asymmetrische Expression wird von FGF8 reguliert, wahrscheinlich als Teil eines frühen rechtsseitigen Signalweges, der Apoptose im rechten Sinushorn des kardialen Einflusstraktes verhindert. Im zweiten Teil der Arbeit wurde die Expression der Hyaluronansynthase 2 (HAS2) in Abhängigkeit von FGF in der Herzfeldregion analysiert. Hyaluronansynthasen produzieren Hyaluronsäure, welches eine essentielle Komponente der extrazellulären Matrix ist. Es wurde in vivo gezeigt, dass die Expression von HAS2 im primären Herzfeld in gleicher Weise von FGF reguliert wird wie die des kardialen Transkriptionsfaktors NKX2.5. Die Ergebnisse dieser Arbeit verdeutlichen, dass FGF während der frühen Entwicklung des Herzens und der Entstehung des Proepikards diverse Funktionen besitzt. N2 - The aim of this study was the functional analysis of FGF signaling during early heart field formation and proepicardial development in the chick embryo. Fibroblast growth factors (FGF) belong to a large group of signaling molecules and play crucial roles in many different developmental processes. The proepicardium (PE) develops asymmetrically on the right sinus horn of the cardiac inflow tract and is the source of the coronary vasculature of the heart. FGF ligands (FGF2, FGF10, and FGF12) are specifically expressed in epithelial cells of the proepicardium as well as in the underlying inflow tract myocardium. FGF receptors (FGFR1, FGFR2, and FGFR4) display similar expression patterns in the proepicardium and their inhibition by specific antagonists was the entry point into the functional analysis of FGF signaling in proepicardial cells. The inhibition of FGF signaling in vitro leads to retarded outgrowth as well as increased apoptosis in proepicardial explants, which were cultured under serum free conditions. It was shown that both Ras/MAPK and PI3 kinase signaling as integral parts of FGF signaling transduction are responsible for growth and survival of proepicardial cells in this context. However, FGF signaling is not involved in the establishment of proepicardial identity as shown by the maintenance of expression of well-established proepicardial marker genes such as TBX18, WT1 and TBX5 after FGF inhibition. These findings were verified by in vivo experiments, showing that inhibition of FGF leads to retarded outgrowth of the proepicardium. Furthermore it was shown that asymmetric apoptosis in a transiently established left-sided PE-anlage is based on an early differential expression of apoptosis-inducing genes like Caspase 2. This asymmetric expression is regulated by FGF8 probably as part of an early right-sided signaling pathway, which prevents apoptosis in the right sinus horn of the cardiac inflow tract. In a second topic of this thesis the expression of the hyaluronan synthase 2 (HAS2) in the control of FGF signaling during early heart field formation was analyzed. Hyaluronan synthases are involved in the production of hyaluronic acid, which is an essential component of the extracellular matrix. The role of FGF signaling was tested in vivo and it is shown here, that the expression of HAS2 in the primary heart field is dependent on FGF as well as other cardiac marker genes such as the transcription factor NKX2.5. This thesis demonstrates that FGF has multiple roles during early heart development and formation of the proepicardium. KW - Huhn KW - Embryonalentwicklung KW - Fibroblastenwachstumsfaktor KW - Epikard KW - Hyaluronsäure KW - FGF KW - Wnt KW - Has2 KW - Proepikard KW - Kardiogenese KW - Apoptose KW - Hühnerembryo KW - FGF KW - Wnt KW - Has2 KW - proepicardium KW - cardiogenesis KW - apoptosis KW - chick embryo Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47695 ER -