TY - THES A1 - Kropf, Jan T1 - The Dual Olfactory Pathway in the Honeybee Brain: Sensory Supply and Electrophysiological Properties T1 - Der duale olfaktorische Weg im Gehirn der Honigbiene: Sensorischer Eingang und elektrophysiologische Eigenschaften N2 - The olfactory sense is of utmost importance for honeybees, Apis mellifera. Honeybees use olfaction for communication within the hive, for the identification of nest mates and non-nest mates, the localization of food sources, and in case of drones (males), for the detection of the queen and mating. Honeybees, therefore, can serve as excellent model systems for an integrative analysis of an elaborated olfactory system. To efficiently filter odorants out of the air with their antennae, honeybees possess a multitude of sensilla that contain the olfactory sensory neurons (OSN). Three types of olfactory sensilla are known from honeybee worker antennae: Sensilla trichoidea, Sensilla basiconica and Sensilla placodea. In the sensilla, odorant receptors that are located in the dendritic arborizations of the OSNs transduce the odorant information into electrical information. Approximately 60.000 OSN axons project in two parallel bundles along the antenna into the brain. Before they enter the primary olfactory brain center, the antennal lobe (AL), they diverge into four distinct tracts (T1-T4). OSNs relay onto ~3.000-4.000 local interneurons (LN) and ~900 projection neurons (PN), the output neurons of the AL. The axons of the OSNs together with neurites from LNs and PNs form spheroidal neuropil units, the so-called glomeruli. OSN axons from the four AL input tracts (T1-T4) project into four glomerular clusters. LNs interconnect the AL glomeruli, whereas PNs relay the information to the next brain centers, the mushroom body (MB) - associated with sensory integration, learning and memory - and the lateral horn (LH). In honeybees, PNs project to the MBs and the LH via two separate tracts, the medial and the lateral antennal-lobe tract (m/lALT) which run in parallel in opposing directions. The mALT runs first to the MB and then to the LH, the lALT runs first to the LH and then to the MB. This dual olfactory pathway represents a feature unique to Hymenoptera. Interestingly, both tracts were shown to process information about similar sets of odorants by extracting different features. Individual mALT PNs are more odor specific than lALT PNs. On the other hand, lALT PNs have higher spontaneous and higher odor response action potential (AP) frequencies than mALT PNs. In the MBs, PNs form synapses with ~184.000 Kenyon cells (KC), which are the MB intrinsic neurons. KCs, in contrast to PNs, show almost no spontaneous activity and employ a spatially and temporally sparse code for odor coding. In manuscript I of my thesis, I investigated whether the differences in specificity of odor responses between m- and lALT are due to differences in the synaptic input. Therefore, I investigated the axonal projection patterns of OSNs housed in S. basiconica in honeybee workers and compared them with S. trichoidea and S. placodea using selective anterograde labeling with fluorescent tracers and confocal- microscopy analyses of axonal projections in AL glomeruli. Axons of S. basiconica-associated OSNs preferentially projected into the T3 input-tract cluster in the AL, whereas the two other types of sensilla did not show a preference for a specific glomerular cluster. T3- associated glomeruli had previously been shown to be innervated by mALT PNs. Interestingly, S. basiconica as well as a number of T3 glomeruli lack in drones. Therefore I set out to determine whether this was associated with the reduction of glomeruli innervated by mALT PNs. Retrograde tracing of mALT PNs in drones and counting of innervated glomeruli showed that the number of mALT-associated glomeruli was strongly reduced in drones compared to workers. The preferential projections of S. basiconica-associated OSNs into T3 glomeruli in female workers together with the reduction of mALT-associated glomeruli in drones support the presence of a female-specific olfactory subsystem that is partly innervated by OSNs from S. basiconica and is associated with mALT projection neurons. As mALT PNs were shown to be more odor specific, I suppose that already the OSNs in this subsystem are more odor specific than lALT associated OSNs. I conclude that this female-specific subsystem allows the worker honeybees to respond adequately to the enormous variety of odorants they experience during their lifetime. In manuscript II, I investigated the ion channel composition of mALT and lALT PNs and KCs in situ. This approach represents the first study dealing with the honeybee PN and KC ion channel composition under standard conditions in an intact brain preparation. With these recordings I set out to investigate the potential impact of intrinsic neuronal properties on the differences between m- and lALT PNs and on the sparse odor coding properties of KCs. In PNs, I identified a set of Na+ currents and diverse K+ currents depending on voltage and Na+ or Ca2+ that support relatively high spontaneous and odor response AP frequencies. This set of currents did not significantly differ between mALT and lALT PNs, but targets for potential modulation of currents leading to differences in AP frequencies were found between both types of PNs. In contrast to PNs, KCs have very prominent K+ currents, which are likely to contribute to the sparse response fashion observed in KCs. Furthermore, Ca2+ dependent K+ currents were found, which may be of importance for coincidence detection, learning and memory formation. Finally, I conclude that the differences in odor specificity between m- and lALT PNs are due to their synaptic input from different sets of OSNs and potential processing by LNs. The differences in spontaneous activity between the two tracts may be caused by different neuronal modulation or, in addition, also by interaction with LNs. The temporally sparse representation of odors in KCs is very likely based on the intrinsic KC properties, whereas general excitability and spatial sparseness are likely to be regulated through GABAergic feedback neurons. N2 - Der Geruchssinn ist für die Honigbiene, Apis mellifera, von größter Bedeutung. Honigbienen kommunizieren olfaktorisch, sie können Nestgenossinnen und koloniefremde Honigbienen aufgrund des Geruchs unterscheiden, sie suchen und erkennen Nahrungsquellen olfaktorisch, und Drohnen (männliche Honigbienen) finden die Königin mit Hilfe des Geruchssinns. Deshalb dient die Honigbiene als exzellentes Modell für die Untersuchung hochentwickelter olfaktorischer Systeme. Honigbienen filtern Duftmoleküle mit ihren Antennen aus der Luft. Auf diesen Antennen sitzen Sensillen, die die olfaktorischen sensorischen Neurone (OSN) beinhalten. Drei verschiedene olfaktorische Sensillen existieren bei Arbeiterinnen: Sensilla trichoidea, Sensilla basiconica und Sensilla placodea. In diesen Sensillen sind olfaktorische Rezeptorproteine auf den Dendriten der OSN lokalisiert. Diese Duftrezeptoren wandeln die Duftinformationen in elektrische Informationen um. Die Axone von ca. 60.000 OSN ziehen in zwei Bündeln entlang der Antenne in das Gehirn. Bevor sie das erste olfaktorische Gehirnzentrum, den Antennallobus (AL), erreichen, spalten sie sich in vier distinkte Trakte (T1-T4) auf. Im AL verschalten sie auf 3.000-4.000 lokale Interneurone (LN) und auf etwa 900 Ausgangsneurone des AL, die Projektionsneurone (PN). Die axonalen Endigungen der OSN bilden mit Neuriten der PN und LN kugelförmige Strukturen, die so genannten Glomeruli. Die OSN aus den vier Trakten T1-T4 ziehen in vier zugehörige glomeruläre Cluster. LN verschalten die Information unter den AL Glomeruli, PN leiten olfaktorische Informationen zu den nächsten Gehirnstrukturen, den Pilzkörpern und dem lateralen Horn, weiter. Die Pilzkörper werden als Zentrum für sensorische Integration, Lernen und Gedächtnis gesehen. Die PN, die den AL mit dem Pilzkörper und dem lateralen Horn verbinden, verlaufen in Honigbienen parallel über zwei Bahnen, den medialen und den lateralen Antennallobustrakt (mALT/lALT), aber in entgegengesetzter Richtung. Dieser duale olfaktorische Signalweg wurde in dieser Ausprägung bisher nur in Hymenopteren gefunden. Interessanterweise prozessieren beide Trakte Informationen über die gleichen Düfte. Dabei sind mALT PN duftspezifischer und lALT PN haben höhere spontane Aktionspotentialfrequenzen sowie höhere Aktionspotentialfrequenzen in Antwort auf einen Duftreiz. Im Pilzkörper verschalten PN auf Kenyon Zellen (KC), die intrinsischen Neurone des Pilzkörpers. KC sind im Gegensatz zu PN fast nicht spontan aktiv und kodieren Informationen auf räumlicher und zeitlicher Ebene mit geringer Aktivität. Man spricht von einem so genannten "sparse code". Im ersten Manuskript meiner Doktorarbeit habe ich untersucht, ob die Unterschiede in der Spezifität der Duftantworten zwischen mALT und lALT PN zumindest zum Teil auf Unterschieden im sensorischen Eingang beruhen. Ich habe die axonalen Projektionen der OSN der S. basiconica in Honigbienen untersucht und mit den Projektionen von OSN in S. trichoidea und S. placodea verglichen. Dazu wurden die OSN in den S. basiconica anterograd mit Fluoreszenzmarkern gefärbt und mit mittels konfokaler Mikroskopie untersucht und quantifiziert. Die Axone von OSN aus S. basiconica ziehen präferentiell in das T3 Glomerulus Cluster, die Axone der anderen beiden Sensillentypen zeigen keine Präferenz für ein spezielles Cluster. Es wurde bereits gezeigt, dass die Glomeruli des T3 Clusters von mALT PN innerviert werden. Interessanterweise fehlen S. basiconica und Teile der T3 Glomeruli in Drohnen. Deshalb habe ich untersucht, ob die T3 Reduzierung in Drohnen mit einer Reduzierung der mALT Glomeruli einhergeht. Retrograde Färbungen der mALT PN in Drohnen zeigten, daß die Zahl der mALT Glomeruli in Drohnen gegenüber Arbeiterinnen deutlich reduziert ist. Die Präferenz der OSN der S. basiconica für das T3 Cluster und die reduzierte Anzahl von mALT Glomeruli in Drohnen weisen auf ein arbeiterinnenspezifisches olfaktorisches Subsystem hin, welches aus S. basiconica, T3 Glomeruli und einer Gruppe von mALT PN besteht. Da die mALT PN duftspezifischer als lALT PN sind, vermute ich, dass auch die OSN, die auf mALT PN verschalten, duftspezifischer antworten als OSN die auf lALT PN verschalten. Daraus schließe ich, daß dieses Subsystem den Arbeiterinnen ermöglicht, passend auf die enorme Breite an Duftstoffen zu reagieren, die diese im Laufe ihres arbeitsteiligen Lebens wahrnehmen müssen. Im zweiten Manuskript meiner Doktorarbeit habe ich die Ionenkanalzusammensetzung der mALT PN, der lALT PN und der KC in situ untersucht. Mein Ansatz stellt die erste Studie dar, die die Ionenkanäle von Neuronen in der Honigbiene unter Standardbedingungen an einer intakten Gehirnpräparation untersucht. Mit diesen Messungen versuche ich die potentiellen bioelektrischen Grundlagen für Unterschiede in der Informationskodierung in mALT PN, lALT PN und Kenyon Zellen zu ergründen. In PN konnte ich eine Gruppe von Na+ Ionenkanälen und Na+ abhängigen, Ca2+ abhängigen sowie spannungsabhängigen K+ Ionenkanälen identifizieren, die die Grundlagen für hohe, spontane Aktionspotentialfrequenzen und hohe Duftantwortfrequenzen schaffen. Diese Ströme unterschieden sich nicht grundsätzlich zwischen m- und lALT PN. Jedoch wurden potentielle Ziele für neuronale Modulation gefunden, welche zu unterschiedlichen Aktionspotentialfrequenzen zwischen PN der beiden Trakte führen könnten. Im Gegensatz zu den PN wurden in Kenyon Zellen in der Relation sehr starke K+ Ionenströme gemessen. Diese dienen sehr wahrscheinlich der schnellen Terminierung von Duftantworten, also dem Erzeugen des zeitlichen "sparse code". Außerdem wurden Ca2+ abhängige K+ Kanäle gefunden, die für Koinzidenzdetektion, Lernen und Gedächtnis von Bedeutung sein können. In der Gesamtsicht folgere ich aus meinen Ergebnissen, dass die Unterschiede in der Duftspezifizität zwischen m- und lALT PN überwiegend auf deren sensorischen Eingängen von unterschiedlichen Populationen von OSN und der Verarbeitung über lokale Interneuronen im AL beruht. Die Unterschiede in der Spontanaktivität zwischen mALT und lALT basieren sehr wahrscheinlich auf neuronaler Modulation und/oder Interaktion mit LN. Die zeitliche Komponente des "sparse code" in KC entsteht höchstwahrscheinlich durch die intrinsischen elektrischen Eigenschaften der KC, wohingegen die generelle Erregbarkeit und der räumliche "sparse code" mit großer Wahrscheinlichkeit auf der Regulation durch GABAerge Neurone beruht. KW - Voltage-Clamp-Methode KW - Biene KW - Neuroanatomie KW - Neurobiology KW - Olfaction KW - Geruchssinn Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108369 ER - TY - THES A1 - Nieratschker, Vanessa T1 - Charakterisierung der Serin-/Threonin-Proteinkinase SRPK3 in Drosophila melanogaster und Phosphorylierungsstudien an Synapsin T1 - Characterization of the serine-/threonine protein kinase SRPK3 in Drosophila melanogaster and phosphorylation studies on synapsin N2 - In einer vorangegangenen Arbeit konnte eine hypomorphe Mutation innerhalb des Genlokus einer putativen Serin-/Threonin-Kinase als Auslöser der Aggregatbildung des Aktive-Zone- Proteins Bruchpilot in larvalen Motoneuronaxonen identifiziert werden (Nieratschker, 2004). Aufgrund der Homologien dieser Kinase zu SR-Proteinkinasen wurde der Name Serin- /Threonin-Proteinkinase 3 (SRPK3) vorgeschlagen. Laut ursprünglicher Annotation der „Flybase“ (http://flybase.bio.indiana.edu) codiert der Genlokus der Srpk3, der auf dem linken Arm des dritten Chromosoms innerhalb der Region 79D4 lokalisiert ist und sich über ca. 10,3 kb erstreckt, für zwei Transkripte (Srpk3-RC und Srpk3-RB). Diese beiden Transkripte haben unterschiedliche Transkriptions- und Translationsstartpunkte und unterscheiden sich in ihrem ersten kodierenden Exon, ab dem vierten Exon sind sie allerdings identisch. Das Srpk3-RCTranskript umfasst ca. 4,2 kb, das Srpk3-RB-Transkript ca. 3,8 kb. Die von diesen Transkripten kodierten Proteine bestehen aus 816 (Srpk3-RC) bzw. 749 (Srpk3-RB) Aminosäuren. Diese beiden ursprünglich annotierten Transkripte konnten durch RT-PCR-Experimente bestätigt werden. Dabei wurde auch ein zusätzliches, alternativ gespleißtes Exon von 159 bp entdeckt, das beiden Transkripten zugeordnet werden kann. Somit codiert der Srpk3-Genlokus für mindestens vier Transkripte, die Transkripte der RC/RF-Transkriptgruppe mit (Srpk3-RF) und ohne (Srpk3-RC) das alternativ gespleißte Exon und die Transkripte der RB/RETranskriptgruppe mit (Srpk3-RE) und ohne (Srpk3-RB) das alternativ gespleißte Exon. Die Existenz eines weiteren Transkriptes Srpk3-RD, die in der aktuellen Version der „Flybase“ annotiert ist, konnte durch RT-PCR-Experimente nicht nachgewiesen werden. Zu Beginn dieser Arbeit lag eine hypomorphe Mutante für die SRPK3 schon vor (Srpk3P1; Eberle, 1995). Diese Linie trägt eine P-Elementinsertion innerhalb des ersten Exons der RC/RF-Transkriptgruppe, die das Leseraster dieser Transkriptgruppe zerstört, so dass in dieser Linie nur die RB/RE-Transkriptgruppe gebildet werden kann. Wie bereits erwähnt, konnte diese Mutation in vorangegangenen Arbeiten bereits als der Auslöser der Aggregatbildung des Bruchpilot-Proteins in larvalen Motoneuronaxone, sowie einiger Verhaltensdefekte identifiziert werden (Nieratschker, 2004; Bock 2006). Diese Verhaltensdefekte ähneln stark denen, die durch einen knock-down der Bruchpilot-Expression mittels RNAi ausgelöst werden (Wagh et al., 2006; Bock, 2006), was auf eine Interaktion beider Proteine schließen lässt. Um nun den Beweis führen zu können, dass tatsächlich diese Mutation die beobachteten Phänotypen verursacht, wurden Rettungsversuche durchgeführt. Die Srpk3-RF-cDNA war dabei in der Lage die durch die hypomorphe Mutation der SRPK3 verursachten Phänotypen vollständig, oder zumindest teilweise zu retten (vgl. auch Bock, 2006; Bloch, 2007). Damit konnte belegt werden, dass die hypomorphe Mutation der SRPK3 tatsächlich die in der Mutante Srpk3P1 beobachteten Phänotypen verursacht. Um die durch in situ Hybridisierung erhaltenen Daten zur Lokalisation der SRPK3 im larvalen Gehirn (Nieratschker, 2004) bestätigen, sowie weitere Daten erhalten zu können, wurden Isoform-spezifische Antisera gegen die SRPK3 generiert. Diese Antiseren sind in der Lage überexprimiertes Protein zu detektieren (Bloch, 2007), allerdings ist es mit diesen Antiseren nicht möglich die SRPK3 in wildtypischen Präparaten nachzuweisen. Weitere Daten zur Lokalisation der SRPK3, die durch die Verwendung eines SRPK3-eGFPFusionsproteins erhalten wurden, zeigten, dass eine der ektopisch überexprimierten SRPK3- Isoformen mit Bruchpilot an der Aktiven Zone kolokalisiert. Dieses Ergebnis, in Verbindung mit den durch die Mutation der SRPK3 verursachten Bruchpilot-Aggregaten in larvalen Motoneuronaxonen und den Verhaltensdefekten, gibt Hinweise auf eine mögliche direkte Interaktion beider Proteine…. N2 - In a previous study, a hypomorphic mutation in the gene locus of a putative serine-/threonine kinase was found to cause aggregates of the active zone protein Bruchpilot in larval motoneuron axons (Nieratschker, 2004). Because of its high homology to SR-protein kinases this gene was named serine-/threonine protein kinase 3 (Srpk3). The 10,3 kb large Srpk3 gene locus is located on the left arm of the third chromosome in the chromosomal region 79D4. According to an earlier annotation in “flybase” (http://flybase.bio.indiana.edu) the Srpk3 gene codes for two transcripts of 4,2 (Srpk3-RC) and 3,8 kb (Srpk3-RB). These two transcripts use different transcription and translation start sites, but from the fourth exon on they are identical. The Srpk3-RC and Srpk3-RB transcripts code for proteins of 816 and 749 amino acids respectively. The existence of these two originally annotated transcripts could be verified by RT-PCR. In addition, an alternatively spliced exon of 159 bp was identified, which is part of both groups of transcripts (Srpk3-RF and Srpk3-RE). Therefore the Srpk3 gene locus codes for at least four transcripts. Srpk3-RB and Srpk3-RC do not contain the newly identified, alternatively spliced exon, whereas Srpk3-RF and Srpk3-RE do. The existence of another transcript (Srpk3- RD) annotated in the current version of “flybase” could not be confirmed by RT-PCR experiments. The hypomorphic BRPK mutant Srpk3P1, which has a P-element insertion in the first exon of the RC/RF group of transcripts that destroys the open reading frame of those isoforms, already existed (Eberle, 1995). Therefore in that line only the RB/RE isoforms are expressed. That hypomorphic mutation was found to cause Bruchpilot aggregates in larval motoneuron axons (Nieratschker, 2004) and in addition several behavioral deficits (Bock, 2006). The behavioral deficits are similar to those caused by a genetic knock-down of the Bruchpilot expression using RNAi (Wagh et al., 2006; Bock, 2006). This observation points towards an exclusive interaction of both proteins. To prove that in fact the mutation of the SRPK3 causes the observed phenotypes, rescue experiments were performed. We were able to revert the mutant phenotypes by expressing the Srpk3-RF cDNA in the nervous system (see also Bock, 2006; Bloch, 2007). Therefore mutation of the SRPK3 indeed causes the observed phenotypes in the hypomorphic BRPK mutant (Srpk3P1). To confirm the data obtained by in situ hybridization on larval brains (Nieratschker, 2004) and to gain more knowledge regarding the localization of the SRPK3, isoform specific antisera have been generated. These antisera recognize over-expressed protein (Bloch, 2007), but they are not able to recognize SRPK3 in wild type animals. Further data about localization of SRPK3 could be provided by using ectopically overexpressed GFP-tagged SRPK3 isoforms. SRPK3-GFP colocalizes with Bruchpilot at the presynaptic active zone. This result along with the Bruchpilot aggregates in larval motoneuron axons and the behavioral deficits of SRPK3 mutants provide further evidence for a possible interaction of both proteins. To investigate, if a complete loss of SRPK3 expression alters the phenotypes observed in the hypomorphic SRPK3 mutant, a SRPK3 null mutant was generated by jump-out mutagenesis. The phenotypic analyses performed with the hypomorphic line Srpk3P1were repeated with the SRPK3 null mutant. It became obvious that the phenotypes were not enhanced by complete loss of SRPK3 expression (also see Bloch, 2007). Regarding the Bruchpilot aggregates in larval motoneuron axons, no significant differences between hypomorphic mutant and null mutant were observed, however behavioral deficits seem to be more severe in the hypomorph (Bloch, 2007)….. KW - Drosophila melanogaster KW - SRPK KW - Bruchpilot KW - Synapsin KW - Neurobiologie KW - Drosophila melanogaster KW - SRPK KW - Bruchpilot KW - Synapsin KW - Neurobiologie KW - Drosophila melanogaster KW - SRPK KW - Bruchpilot KW - Synapsin KW - Neurobiology Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27806 ER -