TY - JOUR A1 - Roth, Nicolas A1 - Hacker, Herrmann Heinrich A1 - Heidrich, Lea A1 - Friess, Nicolas A1 - García-Barroas, Enrique A1 - Habel, Jan Christian A1 - Thorn, Simon A1 - Müler, Jörg T1 - Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests JF - Ecography N2 - The high diversity of insects has limited the volume of long-term community data with a high taxonomic resolution and considerable geographic replications, especially in forests. Therefore, trends and causes of changes are poorly understood. Here we analyse trends in species richness, abundance and biomass of nocturnal macro moths in three quantitative data sets collected over four decades in forests in southern Germany. Two local data sets, one from coppiced oak forests and one from high oak forests included 125K and 48K specimens from 559 and 532 species, respectively. A third regional data set, representing all forest types in the temperate zone of central Europe comprised 735K specimens from 848 species. Generalized additive mixed models revealed temporal declines in species richness (−38%), abundance (−53%) and biomass (−57%) at the regional scale. These were more pronounced in plant host specialists and in dark coloured species. In contrast, the local coppiced oak forests showed an increase, in species richness (+62%), while the high oak forests showed no clear trends. Left and right censoring as well as cross validation confirmed the robustness of the analyses, which led to four conclusions. First, the decline in insects appears in hyper diverse insect groups in forests and affects species richness, abundance and biomass. Second, the pronounced decline in host specialists suggests habitat loss as an important driver of the observed decline. Third, the more severe decline in dark species might be an indication of global warming as a potential driver. Fourth, the trends in coppiced oak forests indicate that maintaining complex and diverse forest ecosystems through active management may be a promising conservation strategy in order to counteract negative trends in biodiversity, alongside rewilding approaches. KW - climate change KW - colour patterns KW - global change KW - Lepidoptera KW - macro moths KW - specialists KW - time series Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258731 VL - 44 IS - 6 ER - TY - JOUR A1 - Seibold, Sebastian A1 - Hothorn, Torsten A1 - Gossner, Martin M. A1 - Simons, Nadja K. A1 - Blüthgen, Nico A1 - Müller, Jörg A1 - Ambarlı, Didem A1 - Ammer, Christian A1 - Bauhus, Jürgen A1 - Fischer, Markus A1 - Habel, Jan C. A1 - Penone, Caterina A1 - Schall, Peter A1 - Schulze, Ernst‐Detlef A1 - Weisser, Wolfgang W. T1 - Insights from regional and short‐term biodiversity monitoring datasets are valuable: a reply to Daskalova et al. 2021 JF - Insect Conservation and Diversity N2 - Reports of major losses in insect biodiversity have stimulated an increasing interest in temporal population changes. Existing datasets are often limited to a small number of study sites, few points in time, a narrow range of land‐use intensities and only some taxonomic groups, or they lack standardised sampling. While new monitoring programs have been initiated, they still cover rather short time periods. Daskalova et al. 2021 (Insect Conservation and Diversity, 14, 1‐18) argue that temporal trends of insect populations derived from short time series are biased towards extreme trends, while their own analysis of an assembly of shorter‐ and longer‐term time series does not support an overall insect decline. With respect to the results of Seibold et al. 2019 (Nature, 574, 671–674) based on a 10‐year multi‐site time series, they claim that the analysis suffers from not accounting for temporal pseudoreplication. Here, we explain why the criticism of missing statistical rigour in the analysis of Seibold et al. (2019) is not warranted. Models that include ‘year’ as random effect, as suggested by Daskalova et al. (2021), fail to detect non‐linear trends and assume that consecutive years are independent samples which is questionable for insect time‐series data. We agree with Daskalova et al. (2021) that the assembly and analysis of larger datasets is urgently needed, but it will take time until such datasets are available. Thus, short‐term datasets are highly valuable, should be extended and analysed continually to provide a more detailed understanding of insect population changes under the influence of global change, and to trigger immediate conservation actions. KW - Arthropod KW - biodiversity KW - insect decline KW - land use KW - time series Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228309 VL - 14 IS - 1 SP - 144 EP - 148 ER - TY - JOUR A1 - Roth, Nicolas A1 - Zoder, Sebastian A1 - Zaman, Assad Ali A1 - Thorn, Simon A1 - Schmidl, Jürgen T1 - Long‐term monitoring reveals decreasing water beetle diversity, loss of specialists and community shifts over the past 28 years JF - Insect Conservation and Diversity N2 - Lentic freshwater organisms are influenced by a multitude of factors, including geomorphology, hydrology, anthropogenic impacts and climate change. Organisms that depend on patchy resources such as water beetles may also be sensitive to anthropogenic habitat degradation, like pollution, eutrophication, water level or management alteration. To assess composition and ecological trends in the water beetle communities of Central Europe, we sampled water beetles (Dytiscidae, Haliplidae, Noteridae) in 33 water bodies in Southern Germany from 1991 to 2018. We used manual, time‐standardised capture during three periods: between 1991 and 1995, 2007 and 2008, and 2017 and 2018. During the 28‐year survey period, we captured a total of 81 species. We found annual declines in both species number (ca −1%) and abundance (ca −2%). Also, community composition showed significant changes over time. The significant impact of pH on the community composition suggests that the recorded changes through time partly reflect natural succession processes. However, a pronounced decline of beetle species belonging to the moor‐related beetle associations indicated that Central European water beetles are also threatened by non‐successional factors, including desiccation, increased nitrogen input and/or mineralisation, and the loss of specific habitats. This trend to physiographical homogenisation resulted in corresponding community composition shifts. To effectively protect endangered species, conservation strategies need to be aimed at regularly creating new water bodies with mineralic bottom substratum, and maintenance of moor water bodies that represent late successional stages. KW - biodiversity KW - lentic inland water bodies KW - long‐term monitoring KW - time series KW - water beetles Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214905 VL - 13 IS - 2 SP - 140 EP - 150 ER -