TY - JOUR A1 - Schartl, Manfred A1 - Shen, Yingjia A1 - Maurus, Katja A1 - Walter, Ron A1 - Tomlinson, Chad A1 - Wilson, Richard K. A1 - Postlethwait, John A1 - Warren, Wesley C. T1 - Whole body melanoma transcriptome response in medaka JF - PLoS ONE N2 - The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. KW - metastatic melanoma KW - expression KW - fish KW - cancer KW - stage III KW - melanogenesis KW - genome cells KW - gene KW - contributes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144714 VL - 10 IS - 12 ER - TY - JOUR A1 - Laine, Romain F. A1 - Albecka, Anna A1 - van de Linde, Sebastian A1 - Rees, Eric J. A1 - Crump, Colin M. A1 - Kaminski, Clemens F. T1 - Structural analysis of herpes simplex virus by optical super-resolution imaging JF - Nature Communications N2 - Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument. KW - tegument protein pUL36 KW - fluorescence microscopy KW - monoclonal antibodies KW - 3-dimensional structure KW - type-1 KW - nuclear pore complex KW - reconstruction microscopy KW - localization microscopy KW - resolution KW - envelopment Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144623 VL - 6 IS - 5980 ER - TY - JOUR A1 - Alizadehrad, Davod A1 - Krüger, Timothy A1 - Engstler, Markus A1 - Stark, Holger T1 - Simulating the complex cell design of Trypanosoma brucei and its motility JF - PLOS Computational Biology N2 - The flagellate Trypanosoma brucei, which causes the sleeping sickness when infecting a mammalian host, goes through an intricate life cycle. It has a rather complex propulsion mechanism and swims in diverse microenvironments. These continuously exert selective pressure, to which the trypanosome adjusts with its architecture and behavior. As a result, the trypanosome assumes a diversity of complex morphotypes during its life cycle. However, although cell biology has detailed form and function of most of them, experimental data on the dynamic behavior and development of most morphotypes is lacking. Here we show that simulation science can predict intermediate cell designs by conducting specific and controlled modifications of an accurate, nature-inspired cell model, which we developed using information from live cell analyses. The cell models account for several important characteristics of the real trypanosomal morphotypes, such as the geometry and elastic properties of the cell body, and their swimming mechanism using an eukaryotic flagellum. We introduce an elastic network model for the cell body, including bending rigidity and simulate swimming in a fluid environment, using the mesoscale simulation technique called multi-particle collision dynamics. The in silico trypanosome of the bloodstream form displays the characteristic in vivo rotational and translational motility pattern that is crucial for survival and virulence in the vertebrate host. Moreover, our model accurately simulates the trypanosome's tumbling and backward motion. We show that the distinctive course of the attached flagellum around the cell body is one important aspect to produce the observed swimming behavior in a viscous fluid, and also required to reach the maximal swimming velocity. Changing details of the flagellar attachment generates less efficient swimmers. We also simulate different morphotypes that occur during the parasite's development in the tsetse fly, and predict a flagellar course we have not been able to measure in experiments so far. KW - multiparticle collision dynamics KW - human african trypanosomiasis KW - biology KW - cytoskeleton KW - flow KW - flagellar motility KW - tsetse fly KW - propulsion KW - cytokinesis KW - parasites Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144610 VL - 11 IS - 1 ER - TY - JOUR A1 - Wolf, Beat A1 - Kuonen, Pierre A1 - Dandekar, Thomas A1 - Atlan, David T1 - DNAseq workflow in a diagnostic context and an example of a user friendly implementation JF - BioMed Research International N2 - Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing. KW - next generation sequencing KW - genome browser KW - mutation KW - algorithm KW - database KW - format KW - discovery KW - exome KW - variants KW - alignment Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144527 IS - 403497 ER - TY - JOUR A1 - Kang, Ji Hyoun A1 - Manousaki, Tereza A1 - Franchini, Paolo A1 - Kneitz, Susanne A1 - Schartl, Manfred A1 - Meyer, Axel T1 - Transcriptomics of two evolutionary novelties: how to make a sperm-transfer organ out of an anal fin and a sexually selected "sword" out of a caudal fin JF - Ecology and Evolution N2 - Swords are exaggerated male ornaments of swordtail fishes that have been of great interest to evolutionary biologists ever since Darwin described them in the Descent of Man (1871). They are a novel sexually selected trait derived from modified ventral caudal fin rays and are only found in the genus Xiphophorus. Another phylogenetically more widespread and older male trait is the gonopodium, an intromittent organ found in all poeciliid fishes, that is derived from a modified anal fin. Despite many evolutionary and behavioral studies on both traits, little is known so far about the molecular mechanisms underlying their development. By investigating transcriptomic changes (utilizing a RNA-Seq approach) in response to testosterone treatment in the swordtail fish, Xiphophorus hellerii, we aimed to better understand the architecture of the gene regulatory networks underpinning the development of these two evolutionary novelties. Large numbers of genes with tissue-specific expression patterns were identified. Among the sword genes those involved in embryonic organ development, sexual character development and coloration were highly expressed, while in the gonopodium rather more morphogenesis-related genes were found. Interestingly, many genes and genetic pathways are shared between both developing novel traits derived from median fins: the sword and the gonopodium. Our analyses show that a larger set of gene networks was co-opted during the development and evolution of the older gonopodium than in the younger, and morphologically less complex trait, the sword. We provide a catalog of candidate genes for future efforts to dissect the development of those sexually selected exaggerated male traits in swordtails. KW - mouse testis differentiation KW - fishes Xiphophorus KW - beetle horns KW - gonopodium KW - RNA-Seq KW - swordtails KW - Xiphophorus KW - key innovation KW - male-specific traits KW - Co-option KW - genus Xiphophorus KW - hybrid origin KW - Drosophila melanogaster KW - expression analysis KW - cell proliferation KW - preexisting bias KW - sex combs Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144139 VL - 5 IS - 4 ER - TY - JOUR A1 - Lamatsch, Dunja K. A1 - Adolfsson, Sofia A1 - Senior, Alistair M. A1 - Christiansen, Guntram A1 - Pichler, Maria A1 - Ozaki, Yuichi A1 - Smeds, Linnea A1 - Schartl, Manfred A1 - Nakagawa, Shinichi T1 - A transcriptome derived female-specific marker from the invasive Western mosquitofish (Gambusia affinis) JF - PLoS ONE N2 - Sex-specific markers are a prerequisite for understanding reproductive biology, genetic factors involved in sex differences, mechanisms of sex determination, and ultimately the evolution of sex chromosomes. The Western mosquitofish, Gambusia affinis, may be considered a model species for sex-chromosome evolution, as it displays female heterogamety (ZW/ZZ), and is also ecologically interesting as a worldwide invasive species. Here, de novo RNA-sequencing on the gonads of sexually mature G. affinis was used to identify contigs that were highly transcribed in females but not in males (i.e., transcripts with ovary-specific expression). Subsequently, 129 primer pairs spanning 79 contigs were tested by PCR to identify sex-specific transcripts. Of those primer pairs, one female-specific DNA marker was identified, Sanger sequenced and subsequently validated in 115 fish. Sequence analyses revealed a high similarity between the identified sex-specific marker and the 3' UTR of the aminomethyl transferase (amt) gene of the closely related platyfish (Xiphophorus maculatus). This is the first time that RNA-seq has been used to successfully characterize a sex-specific marker in a fish species in the absence of a genome map. Additionally, the identified sex-specific marker represents one of only a handful of such markers in fishes. KW - sex chromosome evolution KW - linkage map KW - determination locus KW - poeciliid fishes KW - heterogamety KW - Cynoglossus semilaevis KW - determining genes KW - Y chromosome KW - sequence alignment Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144004 VL - 10 IS - 2 ER - TY - JOUR A1 - Degen, Tobias A1 - Hovestadt, Thomas A1 - Mitesser, Oliver A1 - Hölker, Franz T1 - High female survival promotes evolution of protogyny and xexual conflict JF - PLoS ONE N2 - Existing models explaining the evolution of sexual dimorphism in the timing of emergence (SDT) in Lepidoptera assume equal mortality rates for males and females. The limiting assumption of equal mortality rates has the consequence that these models are only able to explain the evolution of emergence of males before females, i.e. protandry-the more common temporal sequence of emergence in Lepidoptera. The models fail, however, in providing adaptive explanations for the evolution of protogyny, where females emerge before males, but protogyny is not rare in insects. The assumption of equal mortality rates seems too restrictive for many insects, such as butterflies. To investigate the influence of unequal mortality rates on the evolution of SDT, we present a generalised version of a previously published model where we relax this assumption. We find that longer life-expectancy of females compared to males can indeed favour the evolution of protogyny as a fitness enhancing strategy. Moreover, the encounter rate between females and males and the sex-ratio are two important factors that also influence the evolution of optimal SDT. If considered independently for females and males the predicted strategies can be shown to be evolutionarily stable (ESS). Under the assumption of equal mortality rates the difference between the females' and males' ESS remains typically very small. However, female and male ESS may be quite dissimilar if mortality rates are different. This creates the potential for an 'evolutionary conflict' between females and males. Bagworm moths (Lepidoptera: Psychidae) provide an exemplary case where life-history attributes are such that protogyny should indeed be the optimal emergence strategy from the males' and females' perspectives: (i) Female longevity is considerably larger than that of males, (ii) encounter rates between females and males are presumably low, and (iii) females mate only once. Protogyny is indeed the general mating strategy found in the bagworm family. KW - mortality rates KW - bagworms Lepidoptera KW - size dimorphism KW - mating success KW - life span KW - armyworm Lepidoptera KW - adaptive growth KW - males emerge KW - protandry KW - butterflies Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143586 VL - 10 IS - 3 ER - TY - JOUR A1 - Tsai, Yu-Chen A1 - Grimm, Stefan A1 - Chao, Ju-Lan A1 - Wang, Shih-Chin A1 - Hofmeyer, Kerstin A1 - Shen, Jie A1 - Eichinger, Fred A1 - Michalopoulou, Theoni A1 - Yao, Chi-Kuang A1 - Chang, Chih-Hsuan A1 - Lin, Shih-Han A1 - Sun, Y. Henry A1 - Pflugfelder, Gert O. T1 - Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling JF - PLoS ONE N2 - Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired. KW - morphogenetic furrow progression KW - cell fate KW - compartment boundary KW - reporter gene KW - compound eye KW - gene expression KW - retinal differentiation KW - acts downstream KW - imaginal disk KW - glial cells Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143577 VL - 10 IS - 3 ER - TY - JOUR A1 - Matos, I A1 - Machado, M. P. A1 - Schartl, M. A1 - Coelho, M. M. T1 - Gene expression dosage regulation in an allopolyploid fish JF - PLoS ONE N2 - How allopolyploids are able not only to cope but profit from their condition is a question that remains elusive, but is of great importance within the context of successful allopolyploid evolution. One outstanding example of successful allopolyploidy is the endemic Iberian cyprinid Squalius alburnoides. Previously, based on the evaluation of a few genes, it was reported that the transcription levels between diploid and triploid S. alburnoides were similar. If this phenomenon occurs on a full genomic scale, a wide functional "diploidization'' could be related to the success of these polyploids. We generated RNA-seq data from whole juvenile fish and from adult livers, to perform the first comparative quantitative transcriptomic analysis between diploid and triploid individuals of a vertebrate allopolyploid. Together with an assay to estimate relative expression per cell, it was possible to infer the relative sizes of transcriptomes. This showed that diploid and triploid S. alburnoides hybrids have similar liver transcriptome sizes. This in turn made it valid to directly compare the S. alburnoides RNA-seq transcript data sets and obtain a profile of dosage responses across the S. alburnoides transcriptome. We found that 64% of transcripts in juveniles' samples and 44% in liver samples differed less than twofold between diploid and triploid hybrids (similar expression). Yet, respectively 29% and 15% of transcripts presented accurate dosage compensation (PAA/PA expression ratio of 1 instead of 1.5). Therefore, an exact functional diploidization of the triploid genome does not occur, but a significant down regulation of gene expression in triploids was observed. However, for those genes with similar expression levels between diploids and triploids, expression is not globally strictly proportional to gene dosage nor is it set to a perfect diploid level. This quantitative expression flexibility may be a strong contributor to overcome the genomic shock, and be an immediate evolutionary advantage of allopolyploids. KW - RNA-Seq KW - balance hypothesis KW - hybrids KW - genome KW - maize KW - Squalius alburnoides KW - cell size KW - evolution KW - heterosis KW - complex Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143565 VL - 10 IS - 3 ER - TY - JOUR A1 - Williams, Richard D. A1 - Chagtai, Tasnim A1 - Alcaide-German, Marisa A1 - Apps, John A1 - Wegert, Jenny A1 - Popov, Sergey A1 - Vujanic, Gordan A1 - Van Tinteren, Harm A1 - Van den Heuvel-Eibrink, Marry M A1 - Kool, Marcel A1 - De Kraker, Jan A1 - Gisselsson, David A1 - Graf, Norbert A1 - Gessler, Manfred A1 - Pritchard-Jones, Kathy T1 - Multiple mechanisms of MYCN dysregulation in Wilms tumour JF - Oncotarget N2 - Genomic gain of the proto-oncogene transcription factor gene MYCN is associated with poor prognosis in several childhood cancers. Here we present a comprehensive copy number analysis of MYCN in Wilms tumour (WT), demonstrating that gain of this gene is associated with anaplasia and with poorer relapse-free and overall survival, independent of histology. Using whole exome and gene-specific sequencing, together with methylation and expression profiling, we show that MYCN is targeted by other mechanisms, including a recurrent somatic mutation, P44L, and specific DNA hypomethylation events associated with MYCN overexpression in tumours with high risk histologies. We describe parallel evolution of genomic copy number gain and point mutation of MYCN in the contralateral tumours of a remarkable bilateral case in which independent contralateral mutations of TP53 also evolve over time. We report a second bilateral case in which MYCN gain is a germline aberration. Our results suggest a significant role for MYCN dysregulation in the molecular biology of Wilms tumour. We conclude that MYCN gain is prognostically significant, and suggest that the novel P44L somatic variant is likely to be an activating mutation. KW - integrative genomics viewer KW - oncogene amplification KW - sequencing data KW - gene KW - gain KW - copy number KW - somatic mutations KW - beta-catenin KW - histology KW - reveals KW - Wilms tumour KW - MYCN KW - DNA methylation KW - prognostic marker Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143471 VL - 6 IS - 9 ER -