TY - JOUR A1 - Djakovic, Lara A1 - Hennig, Thomas A1 - Reinisch, Katharina A1 - Milić, Andrea A1 - Whisnant, Adam W. A1 - Wolf, Katharina A1 - Weiß, Elena A1 - Haas, Tobias A1 - Grothey, Arnhild A1 - Jürges, Christopher S. A1 - Kluge, Michael A1 - Wolf, Elmar A1 - Erhard, Florian A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection. KW - herpes virus KW - transcription Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358161 VL - 14 ER - TY - JOUR A1 - Haake, Markus A1 - Haack, Beatrice A1 - Schäfer, Tina A1 - Harter, Patrick N. A1 - Mattavelli, Greta A1 - Eiring, Patrick A1 - Vashist, Neha A1 - Wedekink, Florian A1 - Genssler, Sabrina A1 - Fischer, Birgitt A1 - Dahlhoff, Julia A1 - Mokhtari, Fatemeh A1 - Kuzkina, Anastasia A1 - Welters, Marij J. P. A1 - Benz, Tamara M. A1 - Sorger, Lena A1 - Thiemann, Vincent A1 - Almanzar, Giovanni A1 - Selle, Martina A1 - Thein, Klara A1 - Späth, Jacob A1 - Gonzalez, Maria Cecilia A1 - Reitinger, Carmen A1 - Ipsen-Escobedo, Andrea A1 - Wistuba-Hamprecht, Kilian A1 - Eichler, Kristin A1 - Filipski, Katharina A1 - Zeiner, Pia S. A1 - Beschorner, Rudi A1 - Goedemans, Renske A1 - Gogolla, Falk Hagen A1 - Hackl, Hubert A1 - Rooswinkel, Rogier W. A1 - Thiem, Alexander A1 - Romer Roche, Paula A1 - Joshi, Hemant A1 - Pühringer, Dirk A1 - Wöckel, Achim A1 - Diessner, Joachim E. A1 - Rüdiger, Manfred A1 - Leo, Eugen A1 - Cheng, Phil F. A1 - Levesque, Mitchell P. A1 - Goebeler, Matthias A1 - Sauer, Markus A1 - Nimmerjahn, Falk A1 - Schuberth-Wagner, Christine A1 - Felten, Stefanie von A1 - Mittelbronn, Michel A1 - Mehling, Matthias A1 - Beilhack, Andreas A1 - van der Burg, Sjoerd H. A1 - Riedel, Angela A1 - Weide, Benjamin A1 - Dummer, Reinhard A1 - Wischhusen, Jörg T1 - Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment JF - Nature Communications N2 - Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don’t respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development. KW - cancer microenvironment KW - immunotherapy KW - T cells KW - tumour immunology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357333 VL - 14 ER - TY - JOUR A1 - Salehi, Saeede A1 - Zare, Abdolhossein A1 - Prezza, Gianluca A1 - Bader, Jakob A1 - Schneider, Cornelius A1 - Fischer, Utz A1 - Meissner, Felix A1 - Mann, Matthias A1 - Briese, Michael A1 - Sendtner, Michael T1 - Cytosolic Ptbp2 modulates axon growth in motoneurons through axonal localization and translation of Hnrnpr JF - Nature Communications N2 - The neuronal RNA-binding protein Ptbp2 regulates neuronal differentiation by modulating alternative splicing programs in the nucleus. Such programs contribute to axonogenesis by adjusting the levels of protein isoforms involved in axon growth and branching. While its functions in alternative splicing have been described in detail, cytosolic roles of Ptbp2 for axon growth have remained elusive. Here, we show that Ptbp2 is located in the cytosol including axons and growth cones of motoneurons, and that depletion of cytosolic Ptbp2 affects axon growth. We identify Ptbp2 as a major interactor of the 3’ UTR of Hnrnpr mRNA encoding the RNA-binding protein hnRNP R. Axonal localization of Hnrnpr mRNA and local synthesis of hnRNP R protein are strongly reduced when Ptbp2 is depleted, leading to defective axon growth. Ptbp2 regulates hnRNP R translation by mediating the association of Hnrnpr with ribosomes in a manner dependent on the translation factor eIF5A2. Our data thus suggest a mechanism whereby cytosolic Ptbp2 modulates axon growth by fine-tuning the mRNA transport and local synthesis of an RNA-binding protein. KW - molecular neuroscience KW - RNA-binding proteins KW - RNA transport Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357639 VL - 14 ER - TY - JOUR A1 - Bachert, Antonia A1 - Scheiner, Ricarda T1 - The ant’s weapon improves honey bee learning performance JF - Scientific Reports N2 - Formic acid is the main component of the ant’s major weapon against enemies. Being mainly used as a chemical defense, the acid is also exploited for recruitment and trail marking. The repelling effect of the organic acid is used by some mammals and birds which rub themselves in the acid to eliminate ectoparasites. Beekeepers across the world rely on this effect to control the parasitic mite Varroa destructor. Varroa mites are considered the most destructive pest of honey bees worldwide and can lead to the loss of entire colonies. Formic acid is highly effective against Varroa mites but can also kill the honeybee queen and worker brood. Whether formic acid can also affect the behavior of honey bees is unknown. We here study the effect of formic acid on sucrose responsiveness and cognition of honey bees treated at different live stages in field-relevant doses. Both behaviors are essential for survival of the honey bee colony. Rather unexpectedly, formic acid clearly improved the learning performance of the bees in appetitive olfactory conditioning, while not affecting sucrose responsiveness. This exciting side effect of formic acid certainly deserves further detailed investigations. KW - animal behaviour KW - animal physiology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358064 VL - 13 ER - TY - JOUR A1 - Kárpáti, Zsolt A1 - Deutsch, Ferenc A1 - Kiss, Balázs A1 - Schmitt, Thomas T1 - Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii JF - Scientific Reports N2 - Seasonal plasticity in insects is often triggered by temperature and photoperiod changes. When climatic conditions become sub-optimal, insects might undergo reproductive diapause, a form of seasonal plasticity delaying the development of reproductive organs and activities. During the reproductive diapause, the cuticular hydrocarbon (CHC) profile, which covers the insect body surface, might also change to protect insects from desiccation and cold temperature. However, CHCs are often important cues and signals for mate recognition and changes in CHC composition might affect mate recognition. In the present study, we investigated the CHC profile composition and the mating success of Drosophila suzukii in 1- and 5-day-old males and females of summer and winter morphs. CHC compositions differed with age and morphs. However, no significant differences were found between the sexes of the same age and morph. The results of the behavioral assays show that summer morph pairs start to mate earlier in their life, have a shorter mating duration, and have more offspring compared to winter morph pairs. We hypothesize that CHC profiles of winter morphs are adapted to survive winter conditions, potentially at the cost of reduced mate recognition cues. KW - ecology KW - zoology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358095 VL - 13 ER - TY - JOUR A1 - Frank, Erik T. A1 - Kesner, Lucie A1 - Liberti, Joanito A1 - Helleu, Quentin A1 - LeBoeuf, Adria C. A1 - Dascalu, Andrei A1 - Sponsler, Douglas B. A1 - Azuma, Fumika A1 - Economo, Evan P. A1 - Waridel, Patrice A1 - Engel, Philipp A1 - Schmitt, Thomas A1 - Keller, Laurent T1 - Targeted treatment of injured nestmates with antimicrobial compounds in an ant society JF - Nature Communications N2 - Infected wounds pose a major mortality risk in animals. Injuries are common in the ant Megaponera analis, which raids pugnacious prey. Here we show that M. analis can determine when wounds are infected and treat them accordingly. By applying a variety of antimicrobial compounds and proteins secreted from the metapleural gland to infected wounds, workers reduce the mortality of infected individuals by 90%. Chemical analyses showed that wound infection is associated with specific changes in the cuticular hydrocarbon profile, thereby likely allowing nestmates to diagnose the infection state of injured individuals and apply the appropriate antimicrobial treatment. This study demonstrates that M. analis ant societies use antimicrobial compounds produced in the metapleural glands to treat infected wounds and reduce nestmate mortality. KW - animal behaviour KW - chemical ecology KW - entomology KW - microbial ecology KW - proteomics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358081 VL - 14 ER - TY - JOUR A1 - Maichl, Daniela Simone A1 - Kirner, Julius Arthur A1 - Beck, Susanne A1 - Cheng, Wen-Hui A1 - Krug, Melanie A1 - Kuric, Martin A1 - Ade, Carsten Patrick A1 - Bischler, Thorsten A1 - Jakob, Franz A1 - Hose, Dirk A1 - Seckinger, Anja A1 - Ebert, Regina A1 - Jundt, Franziska T1 - Identification of NOTCH-driven matrisome-associated genes as prognostic indicators of multiple myeloma patient survival JF - Blood Cancer Journal N2 - No abstract available. KW - cancer microenvironment KW - myeloma Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357598 VL - 13 ER - TY - JOUR A1 - Klimm, Fabian S. A1 - Bräu, Markus A1 - König, Sebastian A1 - Mandery, Klaus A1 - Sommer, Carolin A1 - Zhang, Jie A1 - Krauss, Jochen T1 - Importance of habitat area, quality and landscape context for heteropteran diversity in shrub ecotones JF - Landscape Ecology N2 - Context Habitat loss and degradation impose serious threats on biodiversity. However, not all habitats receive the attention commensurate with their ecological importance. Shrub ecotones (successional stages between grasslands and forests) can be highly species-diverse but are often restricted to small areas as prevalent management practices either promote open grassland or forest habitats, threatening the effective conservation of ecotone species. Objectives In this study, we assessed the importance of habitat and landscape features of shrub ecotones for the rarely studied true bugs (Heteroptera), a functionally diverse taxon that comprises highly specialized species and broad generalists. Methods True bugs were sampled with a beating tray in 118 spatially independent shrub ecotones in a region of 45,000 square kilometers in Germany. In addition to habitat area and landscape context, we used a hedge index to evaluate habitat quality. Results Shrub ecotones in open habitats harbored a greater species richness and abundance compared to shaded ones in later seral stages, and species composition differed. Richness and abundance were positively affected by increasing habitat area and quality, whereas an increase in the proportion of semi-natural habitats within 1 km only enhanced richness. While feeding and habitat specialists were more sensitive to habitat area reduction than generalists, this was not the case for weak dispersers and carnivores. Conclusions Our findings emphasize the importance of large and high-quality ecotones that form a patchy mosaic of shrubs and herbaceous plants. Such ecotones can benefit both grassland species and species depending on woody plants. Conservation authorities should balance between promoting shrubs and keeping such habitats open to maximize species diversity. KW - hedge index KW - hedgerow KW - true bug KW - semi-natural habitat KW - bush ecotone KW - succession KW - transitional shrubland Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358106 SN - 0921-2973 VL - 39 ER - TY - INPR A1 - Dandekar, Thomas T1 - How do qubits interact? Implications for fundamental physics N2 - Proteins fold in water and achieve a clear structure despite a huge parameter space. Inside a (protein) crystal you have everywhere the same symmetries as there is everywhere the same unit cell. We apply this to qubit interactions to do fundamental physics: We modify cosmological inflation: we replace the big bang by a condensation event in an eternal all-encompassing ocean of free qubits. Rare interactions of qubits in the ocean provide a nucleus or seed for a new universe (domain), as the qubits become decoherent and freeze-out into defined bit ensembles. Next, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth). The crystal unit cell guarantees same symmetries (and laws of nature) everywhere inside the crystal, no inflation scenario is needed. Interacting qubits solidify, quantum entropy decreases in the crystal, but increases outside in the ocean. The interacting qubits form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After this very early modified steps, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements. Applying the Hurwitz theorem to qubits we prove that initiation of qubit interactions can only be 1,2,4 or 8-dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. The phase space of the crystal agrees with the standard model of the basic four forces for n quanta. It includes all possible ensemble combinations of their quantum states m, a total of n**m states. We describe a six-bit-ensemble toy model of qubit interaction and the repulsive forces of qubits for ultra-short distances. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. However, in our four dimensions there is only one bit overlap to neighbor states left (almost solid, only below Planck´s quantum is liquidity left). The E8 symmetry of heterotic string theory has six curled-up, small dimensions. These keep the qubit crystal together and never expand. We give energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit crystal formation. Implications are fundamental answers, e.g. why there is fine-tuning for life-friendliness, why there is string theory with rolled-up dimension and so many free parameters. We explain by cosmological crystallization instead of inflation the early creation of large-scale structure of voids and filaments, supercluster formation, galaxy formation, and the dominance of matter: the unit cell of our crystal universe has a matter handedness avoiding anti-matter. Importantly, crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. Vacuum energy gets appropriate low inside the crystal by its qubit binding energy, outside it is 10**20 higher. Scalar fields for color interaction/confinement and gravity could be derived from the qubit-interaction field. KW - protein folding KW - qubit interaction KW - early cosmology KW - qubit KW - modified inflation KW - crystallization KW - decoherence Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357435 ER - TY - JOUR A1 - Breyer, Maximilian A1 - Grüner, Julia A1 - Klein, Alexandra A1 - Finke, Laura A1 - Klug, Katharina A1 - Sauer, Markus A1 - Üçeyler, Nurcan T1 - \(In\) \(vitro\) characterization of cells derived from a patient with the GLA variant c.376A>G (p.S126G) highlights a non-pathogenic role in Fabry disease JF - Molecular Genetics and Metabolism Reports N2 - Highlights • The GLA variant S126G is not associated with Fabry symptoms in the presented case • S126G has no effect on α-GAL A activity or Gb3 levels in this patient • S126G sensory neurons show no electrophysiological abnormalities Abstract Fabry disease (FD) is a life-limiting disorder characterized by intracellular globotriaosylceramide (Gb3) accumulations. The underlying α-galactosidase A (α-GAL A) deficiency is caused by variants in the gene GLA. Variants of unknown significance (VUS) are frequently found in GLA and challenge clinical management. Here, we investigated a 49-year old man with cryptogenic lacunar cerebral stroke and the chance finding of the VUS S126G, who was sent to our center for diagnosis and initiation of a costly and life-long FD-specific treatment. We combined clinical examination with in vitro investigations of dermal fibroblasts (HDF), induced pluripotent stem cells (iPSC), and iPSC-derived sensory neurons. We analyzed α-GAL A activity in iPSC, Gb3 accumulation in all three cell types, and action potential firing in sensory neurons. Neurological examination and small nerve fiber assessment was normal except for reduced distal skin innervation. S126G iPSC showed normal α-GAL A activity compared to controls and no Gb3 deposits were found in all three cell types. Baseline electrophysiological characteristics of S126G neurons showed no difference compared to healthy controls as investigated by patch-clamp recordings. We pioneer multi-level cellular characterization of the VUS S126G using three cell types derived from a patient and provide further evidence for the benign nature of S126G in GLA, which is of great importance in the management of such cases in clinical practice. KW - Fabry disease KW - variants of unknown significance KW - C.376A>G (p.S126G) KW - globotriaosylceramide KW - induced pluripotent stem cells KW - sensory neurons KW - disease model KW - α-Galactosidase A Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350295 SN - 22144269 VL - 38 ER -