TY - THES A1 - Schuster, Beatrice T1 - Genotyping Fanconi Anemia : From Known to Novel Genes -From Classical Genetic Approaches to Next Generation Sequencing T1 - Genotypisierung der Fanconi Anämie N2 - Fanconi anemia (FA) is an autosomal recessive or X-chromosomal inherited disorder, which is not only phenotypically but also genotypically very heterogeneous. While its hallmark feature is progressive bone marrow failure, many yet not all patients suffer additionally from typical congenital malformations like radial ray defects and growth retardation. In young adulthood the cumulative risk for developing hematological or other malignancies is compared to the general population several hundred-fold increased. The underlying molecular defect is the deficiency of DNA interstrand crosslink (ICL) repair. ICLs are deleterious lesions, which interfere with crucial cellular processes like transcription and replication and thereby can lead to malignant transformation, premature senescence or cell death. To overcome this threat evolution developed a highly complex network of interacting DNA repair pathways, which is conserved completely only in vertebrates. The so called FA/BRCA DNA damage response pathway is able to recognize ICLs on stalled replication forks and promotes their repair through homologous recombination (HR). Today we know 15 FA genes (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O and -P) whose products are involved in this pathway. Although more than 80% of FA patients carry biallelic mutations in either FANCA, FANCC or FANCG, there are still some who cannot be assigned to any of the known complementation groups. This work aimed to indentify the di¬sease causing mutations in a cohort of those unassigned patients. Initial screens of the candidate genes FAN1, MHF1 and MHF2 did not reveal any pathogenic alterations. Moreover, FAN1 could be excluded as FA candidate gene because patients carrying a homozygous microdeletion including the FAN1 locus did not show a phenotype comparable to FA patients. In the case of MHF1 and MHF2 the reason for the negative screening result is not clear. Mutation carriers might be rare or, regarding the diverse and also FA pathway independent protein functions, phenotypically not comparable to FA patients. Nevertheless, this study contri¬buted to the identification and characterization of the most recent members of the FA pathway - RAD51C (FANCO), SLX4 (FANCP) and XPF (FANCQ). FANCO is one of the RAD51 paralogs and is involved in crucial steps of HR. But since the only reported FA-O patient has so far not developed any hematological anomalies, FANCO is tentatively designated as gene underlying an FA-like disorder. In contrast, patients carrying biallelic mutations in FANCP do not only show hematological anomalies, but as well congenital malformations typical for FA. The distinct role of FANCP in the FA pathway could not be determined, but it is most likely the coordination of structure-specific nucleases during ICL excision. One of these nucleases is the heterodimer XPF/ERCC1. XPF is probably disease causing in the complementation group FA-Q and is the first FA gene, which was identified by Next Generation Sequencing (NGS). Extraordinarily is that mutations in this gene had previously been reported to cause two other disorders, xeroderma pigmentosum and segmental progeria. Despite some overlaps, it was shown that the divergent phenotypes could clearly be distinguished and are caused by distinct functional defects of XPF. Additionally, this work aimed to improve and accelerate the genotyping process of FA patients in general. Therefore, classical approaches should be complemented or fully replaced by approa¬ches using NGS. Massively parallel sequencing of the whole exome proved to be most appro¬priate and the establishment of an FA-specific analysis pipeline facilitated improved molecular diagnostics by combining complementation group assignment and mutation analysis in one step. Consequently two NGS studies revealed the pathogenic defect in several previously unassigned FA patients and thereby added another patient to one of the most recent subtypes, FA-P. In summary, this work contributed not only to further completion of the FA/BRCA DNA repair network by adding three novel genes, it also showed that classical molecular approaches for re¬search as well as for diagnostics could be replaced by NGS. N2 - Die Fanconi Anämie (FA) ist eine autosomal rezessiv oder X-chromosomal vererbte Erkrankung, deren charakteristisches diagnostisches Merkmal das progressive Versagen des Knochenmarks darstellt. Viele, jedoch nicht alle Patienten leiden zusätzlich an kongenitalen Fehlbildungen, wie Radialstrahl-Anomalien oder Minderwuchs. Im Vergleich zur normalen Bevölkerung steigt zu¬dem im jungen Erwachsenenalter das Risiko für hämatologische und auch solide Tumoren um ein Vielfaches. Verantwortlich hierfür ist sehr wahrscheinlich der zugrunde liegende Defekt in der Reparatur von DNA-Interstrang-Quervernetzungen. Diese Art der Läsion blockiert wich¬tige zelluläre Prozesse wie Transkription und Replikation, und kann daher nicht nur zur Ent¬artung oder vorzeitigen Alterung der Zellen, sondern auch zu stark erhöhten Apoptose-Raten führen. Zur Entfernung dieser Quervernetzungen hat die Evolution ein komplexes Netzwerk an verschiedenen Reparaturwegen hervorgebracht, das nur in Vertebraten vollständig konserviert ist. Der sogenannte FA/BRCA-Reparaturweg ist in der Lage Quervernetzungen an stagnierten Replikationsgabeln zu erkennen und zu entfernen. Heute kennen wir 15 Gene (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O und -P), deren Produkte in diesem Weg involviert sind und deren pathogene Veränderung zur Ausprägung des FA-Phänotyps führen. Rund 80% aller Fälle können durch biallelische Mutationen in FANCA, FANCC und FANCG erklärt werden. Pa¬thogene Varianten in anderen Genen werden weitaus seltener gefunden und ein kleiner Anteil der Patienten kann keiner der bekannten Komplementationsgruppen zugeordnet werden. Das Ziel dieser Arbeit war es, den ursächlichen genetischen Defekt in diesen Patienten aufzudecken. Untersuchungen an den Kandidatengenen FAN1, MHF1 und MHF2 konnten keine pathoge¬nen Veränderungen identifizieren. FAN1 konnte darüber hinaus gänzlich als Kandidatengen aus¬geschlossen werden, da Patienten mit einer homozygoten FAN1-Deletion keinen FA-Phänotyp zeigten. Im Fall von MHF1 und MHF2 sind Mutationsträger wahrscheinlich sehr selten oder unterscheiden sich in ihrem Phänotyp von den bisher bekannten FA Patienten. Nichtsdestotrotz trug diese Arbeit maßgeblich zur Aufklärung der genetischen Ursache in den Untergruppen FA-O, FA-P und FA-Q bei. Ursächlich für den Subtyp FA-O sind biallelische Mutationen in RAD51C, einem Paralog der Rekombinase RAD51, mit offenbar entscheidender Funktion in der homolo¬gen Rekombinationsreparatur. Da der einzige bislang beschriebene Patient zum Zeitpunkt der Veröffentlichung zwar charakteristische Fehlbildungen, aber weder hämatologische Auffälligkei¬ten, noch maligne Veränderungen zeigte, wird RAD51C (FANCO) bisher als zugrunde liegendes Gen einer FA-ähnlichen Krankheit bezeichnet. Bei der Identifizierung von SLX4 als ursächliches Gen der Untergruppe FA-P gab es hingegen keine Zweifel; alle Patienten zeigten einen sehr ty¬pischen Phänotyp. SLX4 (FANCP) scheint eine entscheidende Rolle bei der Exzision von DNA-Quervernetzungen zu spielen, indem es die Funktion oder richtige Positionierung von Struktur-spezifischen Nukleasen koordiniert. Eine dieser Nukleasen ist das Heterodimer XPF/ERCC1. XPF liegt wahrscheinlich der Komplementationsgruppe FA-Q zugrunde und ist das erste FA-Gen, das mittels Next Generation Sequencing (NGS) identifiziert wurde. Interessanterweise wurde es zuvor bereits als genetische Ursache von Xeroderma pigmentosum und segmentärer Progerie beschrieben. Diese Studie konnte jedoch belegen, dass die jeweiligen Mutationen die Proteinfunktion derart unterschiedlich beeinflussen, dass es tatsächlich zur Ausprägung von drei divergenten Phänotypen kommen kann. Neben der Kandidatengensuche war ein weiteres Ziel dieser Arbeit die Implementierung neuer Techniken für die FA-Genotypisierung. Klassische Methoden der Molekulargenetik sollten hier¬für durch Anwendungen des NGS ergänzt oder gänzlich ersetzt werden. Die Hochdurchsatz- Sequenzierung des gesamten Exoms erwies sich als geeignet und kann Komplementationsgrup¬pen-Zuordnung und Mutationsanalyse in einem Schritt vereinen. Durch die Etablierung einer FA-spezifischen bioinformatischen Datenanalyse konnte im Rahmen dieser Arbeit der genetische Defekt bereits mehrerer Patienten aufgeklärt werden. Im Besonderen konnte ein weiterer Patient der neuen, noch wenig charakterisierten Untergruppe FA-P zugeordnet werden. Insgesamt trug diese Arbeit also nicht nur zur weiteren Vervollständigung des FA/BRCA-Re-paraturweges bei, indem drei neue FA-Gene hinzugefügt wurden; sie zeigte außerdem, dass klas¬sische Methoden der Molekulargenetik sowohl in Forschung als auch Diagnostik künftig durch das NGS ersetzt werden könnten. KW - Fanconi Anämie KW - DNA Reparatur KW - DNS-Reparatur KW - Fanconi Anemia KW - DNA repair KW - Next generation sequencing Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85515 ER - TY - THES A1 - Groß, Michaela T1 - Genomic changes in Fanconi anemia: implications for diagnosis, pathogenesis and prognosis T1 - Genomische Veränderungen bei Fanconi-Anämie N2 - Fanconi anemia (FA) is a genetically and phenotypically heterogenous autoso- mal recessive disease associated with chromosomal instability, progressive bone marrow failure, typical birth defects and predisposition to neoplasia. The clinical phenotype is similar in all known complementation groups (FA-A, FA-B, FA-C,FA-D1, FA-D2, FA-E, FA-F and FA-G). The cellular phenotype is characterized by hypersensitivity to DNA crosslinking agents (MMC,DEB), which is exploited as a diagnostic tool. Alltogether, the FA proteins constitute a multiprotein pathway whose precise biochemical function(s) remain unknown. FANCA, FANCC, FANCE, FANCF and FANCG interact in a nuclear complex upstream of FANCD2. Complementation group FA-D1 was recently shown to be due to biallelic mutations in the human breast cancer gene 2 (BRCA2). After DNA damage, the nuclear complex regulates monoubiquitylation of FANCD2, result- ing in targeting of this protein into nuclear foci together with BRCA1 and other DNA damage response proteins. The close connection resp. identity of the FA genes and known players of the DSB repair pathways (BRCA1, BRCA2, Rad51) firmly establishs an important role of the FA gene family in the maintenance of genome integrity. The chapter 1 provides a general introduction to the thesis describing the current knowledge and unsolved problems of Fanconi anemia. The following chapters represent papers submitted or published in scientific literature. They are succeeded by a short general discussion (chapter 7). Mutation analysis in the Fanconi anemia genes revealed gene specific mutation spectra as well as different distributions throughout the genes. These results are described in chapter 1 and chapter 2 with main attention to the first genes identified, namely FANCC, FANCA and FANCG. In chapter 2 we provide general background on mutation analysis and we report all mutations published for FANCA, FANCC and FANCG as well as our own unpublished mutations until the year 2000. In chapter 3 we report a shift of the mutation spectrum previously reported for FANCC after examining ten FA-patients belonging to complementation group C. Seven of those patients carried at least one previously unknown mutation, whereas the other three patients carried five alleles with the Dutch founder mu- tation 65delG and one allele with the Ashkenazi founder mutation IVS4+4A>T, albeit without any known Ashkenazi ancestry. We also describe the first large deletion in FANCC. The newly detected alterations include two missense mu- tations (L423P and T529P) in the 3´-area of the FANCC gene. Since the only previously described missense mutation L554P is also located in this area, a case can be made for the existence of functional domain(s) in that region of the gene. In chapter 4 we report the spectrum of mutations found in the FANCG gene com- piled by several laboratories working on FA. As with other FA genes, most muta- tions have been found only once, however, the truncating mutation, E105X, was identified as a German founder mutation after haplotype analysis. Direct compar- ison of the murine and the human protein sequences revealed two leucine zipper motifs. In one of these the only identified missense mutation was located at a conserved residue, suggesting the leucine zipper providing an essential protein-protein interaction required for FANCG function. With regard to genotype-phenotype correlations, two patients carrying a homozygous E105X mutation were seen to have an early onset of the hematological disorder, whereas the missense mutation seems to lead to a disease with later onset and milder clinical course. In chapter 5 we explore the phenomenon of revertant mosaicism which emerges quite frequently in peripheral blood cells of patients suffering from FA. We de- scribe the types of reversion found in five mosaic FA-patients belonging to com- plementation groups FA-A and FA-C. For our single FA-C-patient intragenic crossover could be proven as the mechanism of self-correction. In the remaining four patients (all of them being compound heterozygous in FANCA), either the paternal or maternal allele has reverted back to WT sequence. We also describe a first example of in vitro phenotypic reversion via the emergence of a compensat- ing missense mutation 15 amino acids downstream of the constitutional mutation explaining the MMC-resistance of the lymphoblastoid cell line of this patient. In chapter 6 we report two FA-A mosaic patients where it could be shown that the spontaneous reversion had taken place in a single hematopoietic stem cell. This has been done by separating blood cells from both patients and searching for the reverted mutation in their granulocytes, monocytes, T- and B-lymphocytes as well as in skin fibroblasts. In both patients, all hematopoietic lineages, but not the fibroblasts, carried the reversion, and comparison to their increase in erythrocyte and platelet counts over time demonstrated that reversion must have taken place in a single hematopoietic stem cell. This corrected stem cell then has been able to undergo self-renewal and also to create a corrected progeny, which over time repopulated all hematopoietic lineages. The pancytopenia of these patients has been cured due to the strong selective growth advantage of the corrected cells in vivo and the increased apoptosis of the mutant hematopoietic cells. N2 - Fanconi Anämie (FA) stellt eine sowohl genetisch als auch phänotypisch hetero- gene, autosomal rezessive Erkrankung dar. Charakteristische Merkmale dieser Erkrankung sind die chromosomale Instabilität, ein fortschreitendes Knochen- marksversagen, multiple kongenitale Abnormalitäten und eine Prädisposition zu diversen Neoplasien. Dieser klinische Phänotyp ist bei allen bisher bekannten Komplementationsgruppen (FA-A, FA-B, FA-C, FA-D1, FA-D2, FA-E, FA-F and FA-G) ähnlich, ebenso wie der zelluläre Phänotyp, der durch Hy- persensitivität zu DNA-quervernetzenden Substanzen, wie MMC und DEB, gekennzeichnet ist. Diese Hypersensitivität wird dementsprechend in der FA-Diagnostik verwandt. Alle FA-Proteine arbeiten in einem "Multiprotein- Pathway" zusammen, dessen exakte biochemische Funktion noch nicht geklärt ist. FANCA, FANCC, FANCE, FANCF und FANCG interagieren in einem nukleären Komplex, der nach DNA-Schädigung die Monoubiquitylierung von FANCD2 reguliert, woraufhin man FANCD2 zusammen mit BRCA1 und anderen DNA-Reparaturproteinen in nukleären Foci detektieren kann. Die Komplemen- tationsgruppe FA-D1 wurde kürzlich biallelischen Mutationen im menschlichen Brustkrebsgen BRCA2 zugeordnet. Die enge Verbindung zwischen den FA- Genen und den Doppelstrangbruch(DSB)-Reparaturgenen (BRCA1, BRCA2, Rad51) deutet auf eine wichtige Rolle der FA-Genfamilie in der Erhaltung der genomischen Stabilität hin. Kapitel 1 gibt eine allgemeine Einleitung dieser Promotionsarbeit. Es liefert Hintergrundinformationen zu Fanconi Anämie basierend auf Publikationen bis einschließlich Mai 2002. In den darauffolgenden Kapiteln 2-6 sind eigene Veröf- fentlichungen zur Fanconi Anämie wiedergegeben, die entweder schon publiziert oder zur Veröffentlichung eingereicht worden sind. Zusätzlich zu den Diskussionsabschnitten in den einzelnen Veröffentlichungen werden diese fünf Arbeiten in Kapitel 7 kurz gemeinsam diskutiert. Die Mutationsanalyse in den diversen FA-Genen lieferte genspezifische Mutations- spektren sowie genspezifische Mutations-Verteilungen. Diese werden in Kapitel 1 und 2 beschrieben, wobei Kapitel 2 nur auf die zuerst entdeckten FA-Gene, FANCC, FANCA und FANCG, eingeht. In Kapitel 2 werden allgemeine Hinter- grundinformationen zur Mutationsanalyse geliefert und alle bis zum Jahr 2000 für FANCA, FANCC und FANCG publizierten Mutationen sowie unsere eigenen bis dato unveröffentlichten Veränderungen dargestellt. In Kapitel 3 berichten wir über eine bemerkenswerte Verschiebung des bisher beschriebenen FANCC-Mutationsspektrums. Von den zehn von uns untersuchten FA-C-Patienten trugen acht zumindest eine neue Mutation, wohingegen die drei restlichen Patienten fünf 65delG-Allele und ein IVS4+4A>T-Allel besaßen. Inter- essanterweise fanden wir auch erstmals große Deletionen im FANCC-Gen, deren Existenz bisher nur für FANCA beschrieben war. Weiterhin werden zwei bisher nicht bekannte Missense Mutationen (L423P und T529P) im 3´-Bereich des Gens beschrieben. In dieser Region findet sich auch der bisher einzige pathogene Aminosäureaustausch, L554P, was auf die Existenz einer funktionellen Domäne in dieser Genregion hindeutet. Außerdem scheinen unsere neu detektierten Muta- tionen vielmehr verstreut im Gen vorzuliegen als dies bisher angenommen worden war. Denn die bisher beschriebenen Veränderungen betreffen vor allem den Exon-bereich 5-6 sowie das amino- und carboxyterminale Ende von FANCC. Kapitel 4 beschreibt das Mutationsspektrum für FANCG, zusammengetragen von verschiedenen FA-Arbeitsgruppen. Wie in den anderen FA-Genen traten die meisten Mutationen auch hier nur einmal auf. Allerdings konnte die trunkierende Mutation, E105X, nach einer Haplotyp-Analyse als deutsche Gründermutation beschrieben werden. Ein direkter Vergleich der Proteinsequenzen von Men- sch und Maus ergab Hinweise auf konservierte Genabschnitte sowie auf zwei Leuzin-Zipper-Motive. Die einzige beschriebene Missense Mutation befindet sich in einem konservierten Bereich eines dieser beiden Leuzin-Zipper, was auf eine wichtige Rolle dieses Motivs für FANCG in Bezug auf Protein-Protein- Interaktionen schließen läßt. Obwohl die Anzahl der Patienten mit vergleichbaren Mutationen zu gering für statistisch signifikante Aussagen war, so fiel doch auf, dass bei den beiden Patienten mit einer homozygoten E105X-Mutation wesentlich früher hämatologische Probleme auftraten als bei dem Patienten mit der heterozygoten Missense Mutation, für den ein milder klinischer Verlauf sowie ein späteres Einsetzen hämatologischer Probleme berichtet wurde. Kapitel 5 und 6 behandeln das Phänomen des reversen Mosaizismus, der sehr häu- fig im Blut von FA-Patienten zu diagnostizieren ist. In Kapitel 5 beschreiben wir die Reversionsmechanismen von fünf Patienten, von denen einer der Komplemen- tationsgruppe C und die anderen vier der Komplementationsgruppe A angehören. Der Mechanismus, welcher der Selbstkorrektur des FA-C-Patienten zugrunde lag, konnte als intragene Rekombination definiert werden. Bei den verbleibenden vier compound heterozygoten FA-A-Patienten war jeweils eine Rückmutation zum Wildtyp auf dem mütterlichen bzw. väterlichen Allel ursächlich für die phäno- typische Gesundung der Blutzellen. Desweiteren beschreiben wir eine in vitro-Reversion in der lymphoblastoiden Linie eines unserer Patienten erstmals den Mechanismus einer sekundären Missense Mutation 15 Aminosäuren nach der kon- stitutionellen Mutation. Diese "kompensatorische" Mutation ist für die MMC- Resistenz der Zellinie verantwortlich. 4 von 5 der untersuchten Mosaik-Patienten zeigten eine eindeutige Verbesserung ihrer Blutwerte. Die Diagnose "Mosaizis-mus" verbessert offenbar die Prognose des Krankheitsbildes vor allem dann, wenn die Reversion eines Allels in einem frühen Stadium der Hämatopoiese auftritt. In Kapitel 6 berichten wir von zwei Mosaik-Patienten, bei denen untersucht wurde, wann in der Hämatopoiese die Reversion stattgefunden haben muss. Es konnte gezeigt werden, dass die Reversion in einer einzelnen hämatopoietischen Stammzelle erfolgte. Der Nachweis wurde durch die Isolierung einzelner Blutzell- typen, wie Granulozyten, Monozyten, T- und B-Zellen, aus dem peripheren Blut unserer Patienten sowie durch das Vorhandensein bzw. Nichtvorhanden- sein der Reversion in diesen Zellen geführt. Zum Vergleich wurden Hautfibrob- lasten herangezogen, da diese bei Mosaizismus im Blut nicht revertiert sind. In beiden Patienten trugen alle isolierten Blutzellen, nicht jedoch die Hautzellen, die Reversion. Dies und ein zusätzlicher Vergleich mit den zu diesem Zeit- punkt angestiegenen Erythrozyten- und Thrombozytenzahlen zeigten, dass die Reversion in einer einzigen hämatopoietischen Stammzelle stattgefunden haben muss. Dieser revertierten Stammzelle sind alle jeweils phänotypisch korrigierten Blutzellen zuzuschreiben, die dann die gesamte Hämatopoiese übernahmen und aufgrund eines in vivo Wachstumsvorteils sowie der erhöhten Apoptoserate der mutierten Zellen die Panzytopenie beider Patienten im Sinne einer "natürlichen" oder "spontanen" Gentherapie zur Ausheilung brachten. KW - Fanconi-Anämie KW - Genmutation KW - Fanconi Anämie KW - Mutationen KW - Mosaizismus KW - Reversion KW - Fanconi anemia KW - mutations KW - mosaicism KW - reversion Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6579 ER -