TY - THES A1 - Gotthard, Hannes T1 - Targeting Colorectal Cancer Stem Cells with Hemibodies T1 - Eliminierung von Krebsstammzellen des kolorektalen Karzinoms mithilfe von Hemibodies N2 - The cancer stem cell hypothesis is a cancer development model which elicited great interest in the last decades stating that cancer heterogeneity arises from a stem cell through asymmetrical division. The Cancer Stem Cell subset is described as the only population to be tumorigenic and having the potential to renew. Conventional therapy often fails to eradicate CSC resulting in tumor relapse. Consequently, it is of great inter-est to eliminate this subset of cells to provide the best patient outcome. In the last years several approaches to target CSC were developed, one of them being immunotherapeu-tic targeting with antibodies. Since markers associated with CSC are also expressed on normal stem cells or healthy adjacent tissue in colorectal cancer, dual targeting strate-gies are preferred over targeting only a single antigen. Subsequently, the idea of dual targeting two CSC markers in parallel by a newly developed split T cell-engaging anti-body format termed as Hemibodies emerged. In a preliminary single cell RNA sequenc-ing analysis of colorectal cancer cells CD133, CD24, CD166 and CEA were identified as suitable targets for the combinatorial targeting strategy. Therefore, this study focused on trispecific and trivalent Hemibodies comprising a split binding moiety against CD3 and a binding moiety against either CD133, CD24, CD166 or CEA to overcome the occurrence of resistance and to efficiently eradicate all tumor cells including the CSC compartment. The study showed that the Hemibody combinations CD133xCD24, CD133xCD166 and CD133xCEA are able to eliminate double positive CHO cells with high efficacy while having a high specificity indicated by no killing of single antigen positive cells. A thera-peutic window ranging between one to two log levels could be achieved for all combina-tions mentioned above. The combinations CD133xCD24 and CD133xCD166 further-more proved its efficacy and specificity on established colorectal cancer cell lines. Be-sides the evaluation of specificity and efficacy the already introduced 1st generation of Hemibodies could be improved into a 2nd generation Hemibody format with increased half-life, stability and production yield. In future experiments the applicability of above-mentioned Hemibodies will be proven on patient-derived micro tumors to also include variables like tumor microenvironment and infiltration. N2 - In den letzten Jahrzenten wurde neben der klonalen Evolution ein weiteres Modell zur Krebsentstehung und dessen Heterogenität entwickelt: die Krebsstammzellhypothe-se. Diese Hypothese besagt, dass die Heterogenität eines Tumors durch asymmetri-sche Teilung von sogenannten Krebsstammzellen entsteht. Nur diese sind tumorigen und in der Lage Metastasen zu bilden. Außerdem werden Krebsstammzellen als re-sistent gegen konventionelle Therapien beschrieben, weshalb es nach einer anfängli-chen Tumorregression oft zu einem Rezidiv durch erneutes Auswachsen von zurück-bleibenden Krebsstammzellen kommt. Deshalb ist es von großem Interesse genau diese Population abzutöten, um eine erfolgreiche Therapie zu gewährleisten. In den letzten Jahren wurden zahlreiche Medikationen entwickelt, um Krebsstammzellen ge-zielt anzugreifen. Ein vielversprechender Ansatz ist hierbei die immuntherapeutische Adressierung mittels Antikörpern gegen Krebsstammzellmarkern. Einzelne Marker sind allerdings auch auf normalen Stammzellen und gesundem Gewebe exprimiert, weshalb Therapien, die auf mindestens zwei verschiedene Oberflächenproteine ab-zielen, erfolgsversprechender sind. In dieser Arbeit wurde ein neues T-Zell rekrutie-rendes Antikörperformat entwickelt, sogenannte Hemibodies. Hierbei handelt es sich um ein trispezifisches und trivalentes Format, bestehend aus jeweils zwei Fragmen-ten. Jedes Fragment besteht aus einer Bindedomäne gegen ein Krebsstammzellmar-ker und einer geteilten Bindedomäne gegen CD3. Durch Bindung beider Fragmente an einen Stammzellmarker kommt es zur Komplementierung der geteilten anti-CD3 Domäne und zur T-Zellrekrutierung. Der erste Teil der Arbeit befasst sich mit der bioin-formatischen Analyse von Einzelzell-RNA-Daten des kolorektalen Karzinoms (KRK) zur Identifizierung von potentiellen Krebsstammzellmarkern. Dabei konnten die Ober-flächenproteine CD24, CD133, CD166 und CEA und besonders deren Kombination als geeignete Zielstrukturen identifiziert werden. Die gegen oben genannte Antigene gerichteten Hemibodies zeigten in den Kombinationen CD133xCD24, CD133xCD166 und CD133xCEA auf doppelt positiven CHO-Zellen eine hohe Effektivität. Außerdem konnte die Spezifität durch ein Ausbleiben von Zelltod auf einzel-positiven CHO Zellen bewiesen werden. Die Kombinationen CD133xCD24 und CD133xCD166 konnten Effektivität und Spezifität auch auf etablierten Krebszellen zeigen. Die oben genann-ten Kombinationen waren in einem therapeutischen Fenster von ein bis zwei Logstu-fen funktional. Neben der Testung verschiedener Hemibody-Kombinationen konnten die bereits publizierten Hemibodies der ersten Generation in ein neues Format der zweiten Generation weiterentwickelt werden. Das neue Format zeigte eine verbesser-te Halbwertszeit, Stabilität und Produzierbarkeit. In zukünftigen Experimenten werden die in der Thesis benutzten Hemibodies auf Mikrotumoren getestet, um weitere Vari-ablen, die die Effektivität und Spezifität beeinflussen zu ermitteln. KW - Monoklonaler bispezifischer Antikörper KW - Antikörper KW - T-Lymphozyt KW - Immunreaktion KW - Dickdarmkrebs KW - Hemibody KW - Hemibodies KW - Colorectal Cancer KW - trispecific KW - T-cell engager KW - dual targeting KW - Bispecific T-cell engager KW - stem cells KW - Kolorektales Karzinom Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303090 ER - TY - THES A1 - Huang, Ting T1 - Vaccinia Virus-mediated Therapy of Solid Tumor Xenografts: Intra-tumoral Delivery of Therapeutic Antibodies T1 - Vaccini-Virus-vermittelte Therapie solider Tumoren: Intra-tumoraler Transport therapeutischer Antikörper N2 - Over the past 30 years, much effort and financial support have been invested in the fight against cancer, yet cancer still represents the leading cause of death in the world. Conventional therapies for treatment of cancer are predominantly directed against tumor cells. Recently however, new treatments options have paid more attention to exploiting the advantage of targeting the tumor stroma instead. Vaccinia virus (VACV) has played an important role in human medicine since the 18th century as a vaccination against smallpox. In our laboratory, the recombinant, replication-competent vaccinia virus, GLV-1h68, was shown to enter, colonize and destroy cancer cells both in cell culture, and in vivo, in xenograft models (Zhang, Yu et al. 2007). In addition, combined therapy of GLV-1h68 and anti-VEGF immunotherapy significantly enhanced antitumor therapy in vivo (Frentzen, Yu et al. 2009). In this study, we constructed several new recombinant VACVs carrying genes encoding different antibodies against fibroblast activation protein (FAP) in stroma (GLV-1h282), nanobody against the extracellular domain of epidermal growth factor receptor (EGFR, GLV-1h442) or antibodies targeting both vascular endothelial growth factor (VEGF) and EGFR (GLV-1h444) or targeting both VEGF and FAP (GLV-1h446). The expression of the recombinant proteins was first verified using protein analytical methods, SDS-gel electrophoresis, Western blot analysis, immunoprecipitation (IP) assays and ELISA assays. The proteins were detected after infection of the cells with the different VACVs and the recombinant proteins purified by affinity adsorption. The purified antibodies were shown to specifically bind to their respective antigens. Secondly, the infection and replication capability of all the virus strains was analyzed in cell culture using several human tumor cell lines (A549, FaDu or DU145), revealing that all the new recombinant VACVs were able to infect cancer cells with comparable efficiency to the parental viruses from which they were derived. Thirdly, the antitumor efficacy of the new recombinant VACVs was evaluated in vivo using several human cancer xenograft models in mice. In A549 and DU145 xenografts, the new recombinant VACVs exhibited an enhanced therapeutic efficacy compared to GLV-1h68 with no change in toxicity in mice. In the FaDu xenograft, treatment with GLV-1h282 (anti-FAP) significantly slowed down the speed of tumor growth compared to GLV-1h68. Additionally, treatment with the recombinant VACVs expressed the various antibodies achieved comparable or superior therapeutic effects compared to treatment with a combination of GLV-1h68 and the commercial therapeutic antibodies, Avastin, Erbitux or both. Next, the virus distribution in tumors and organs of treated mice was evaluated. For most of the viruses, the virus titer in tumors was not signficantly diffferent than GLV-1h68. However, for animals treated with GLV-1h282, the virus titer in tumors was significantly higher than with GLV-1h68. This may be the reason for enhanced antitumor efficacy of GLV-1h282 in vivo. Lastly, the underlying mechanisms of therapeutic antibody-enhanced antitumor effects were investigated by immunohistochemistry. Blood vessels density and cell proliferation in tumors were suppressed after treatment with the antibody-encoded VACVs. The results indicated that the suppression of angiogenesis or cell proliferation in tumors may cause the observed therapeutic effect. In conclusion, the results of the studies presented here support the hypothesis that the treatment of solid tumors with a combination of oncolytic virotherapy and immunotherapy has an additive effect over each treatment alone. Moreover, expression of the immunotherapeutic antibody by the oncolytic VACV locally in the tumor enhances the antitumor effect over systemic treatment with the same antibody. Combined, these results indicate that therapy with oncolytic VACVs expressing-therapeutic antibodies may be a promising approach for the treatment of cancer. N2 - In den letzten 30 Jahren wurde viel Aufwand und finanzielle Unterstützung in den Kampf gegen Krebs investiert, doch das Resultat ist limitiert, da Krebs immer noch die zweithöchste Todesursache in der Welt darstellt. Zusätzlich zu gegenwärtig verwendeten Therapien, die vorwiegend gegen Tumorzellen gerichtet sind, wird neuen Therapien mehr Aufmerksamkeit gewidmet, die stattdessen direkt auf das Tumorstroma zielen. Onkolytische Vaccinia Viren haben seit dem 18ten Jahrhundert als Impfstoff gegen Pocken in der Humanmedizin eine wichtige Rolle gespielt. In unserem Labor hat das rekombinante, replikationskompetente Vaccinia Virus GLV-1h68 gezeigt, dass es in Zellkultur und in Xenograft Modellen in Krebszellen eindringen sowie diese kolonisieren und zerstören kann (Zhang, Yu et al. 2007). Zusätzlich verbessert die kombinierte Therapie von GLV-1h68 und anti-VEGF Immunotherapy signifikant die Antitumortherapie in vivo (Frentzen, Yu et al. 2009). In dieser Studie haben wir mehrere neue rekombinante VACVs konstruiert, die die Gene für verschiedene Antikörper gegen das Fibroblasten Aktivierungs Protein (FAP) im Stroma (GLV-1h282) oder einen Nanobody gegen die extrazelluläre Domäne des Epidermalen Wachstumsfaktor (EGFR; GLV-1h442) kodieren. Ausserdem wurden Viren konstruiert, die eine Ko-Expression von Antikörpern gegen sowohl vaskulären Endothelwachstumsfaktor (VEGF) als auch EGFR (GLV-1h444) oder gegen sowohl VEGF als auch FAP (GLV-1h446) erlauben. Zunächst wurden SDS-Gelelektrophorese, Western Blot Analyse, Immunprezipitation (IP) und ELISA Assays durchgeführt, um die Expression der rekombinanten Proteine in Zellen mit proteinanalytischen Methoden zu untersuchen. Die Proteine waren nach Infektion der Zellen mit den verschiedenen VACVs nachweisbar und wurden mittles des FLAG Tags mit einem IP Kit aufgereinigt. Es konnte gezeigt werden, dass die aufgereinigten Antikörper spezifisch an ihr jeweiliges Antigen binden. Zweitens wurde die Infektion und Replikationsfähigkeit aller Virusstämme in Zellkultur untersucht (A549, FaDu oder DU145) und mit ihrem jeweiligen Ausgangsstamm GLV-1h68, GLV-1h164, GLV-1h282 oder GLV-1h442 verglichen. Die Ergebnisse zeigten, dass alle neuen rekombinanten VACVs Zellen mit vergleichbarer Effizienz infizieren konnten wie ihre Ausgangsstämme. Drittens, um die Antitumoreffizienz der neuen rekombinanten Stämme in vivo zu testen, wurden verschiedene humane Tumor Xenotransplantat-tragende Nacktmäuse mit verschiedenen VACVs behandelt. In A549 und DU145 Xenotransplantaten zeigten die neuen rekombinanten VACVs erhöhte therapeutische Effizienz verglichen mit dem Ausgangsstamm GLV-1h68, ohne Veränderung der Toxizität in Mäusen. Im FaDu Xenotransplantat verursachte die Behandlung mit GLV-1h68 keine Tumorregression, wohingegen die Behandlung mit GLV-1h282 (anti-FAP) die Geschwindigkeit des Tumorwachstums signifikant verlangsamte sowie das Überleben verlängerte. Zusätzlich haben wir herausgefunden, dass die Behandlung mit Antikörpern, die mittels Virus geliefert wurden, einen identischen oder sogar erhöhten inhibitorischen Effekt erzielen können, wie in einer Kombinationstherapie von GLV-1h68 und kommerziell erhältlichen Antikörpern, wie Avastin, Erbitux oder beidem. Um die virale Verteilung in vivo zu untersuchen, wurden Tumore und Organe von Mäusen seziert und homogenisiert, gefolgt von Titration der Virusmenge. Die Virus-Titer in Tumoren waren signifikant höher in Tieren, die mit GLV-1h282 behandelt wurden als solche, die mit GLV-1h68 behandelt wurden. Dies mag den Grund für die erhöhte Antitumoreffizienz von GLV-1h282 in vivo darstellen. Die Virus-Titer in allen anderen Gruppen zeigten keinen signifikanten Unterschied. Um den Mechanismus der durch therapeutische Antikörper erhöhten Antitumortherapie zu untersuchen, wurde Immunohistochemie durchgeführt. Nach Behandlung mit den Antikörper-kodierenden VACVs waren die Blutgefäβdichte und Zellproliferation in Tumoren reduziert, nachgewiesen durch die jeweilige CD31 and Ki67 Färbung. Die Resultate deuteten an, dass die Suppression der Angiogenese oder der Zellproliferation in Tumoren den beobachteten Effekt verursachen könnte. Zusammenfassend zeigen die hier präsentierten Daten dass die Kombination der Behandlung von onkolytischer Virotherapie mit Immunotherapie durch Virus-gelieferte Antikörper einen vielversprechenden Ansatz für Krebstherapie darstellt. KW - Vaccinia-Virus KW - therapeutic antibody KW - oncolytic virus KW - Krebs KW - Therapie KW - Antikörper KW - Tumor Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-91327 ER - TY - THES A1 - Banaszek, Agnes T1 - Dual Antigen-Restricted Complementation of a Two-Part Trispecific Antibody for Targeted Immunotherapy of Blood Cancer T1 - Von zwei Antigenen abhängige Komplementierung eines zweiteiligen trispezifischen Antikörpers zur gezielten Immuntherapie von Blutkrebs N2 - Cancer cells frequently escape from immune surveillance by down-regulating two important components of the immune defence: antigen-presenting MHC and costimulatory molecules. Therefore several novel anti-tumour compounds that aim to assist the immune system in recognising and fighting cancer are currently under development. Recombinant bispecific antibodies represent one group of such novel therapeutics. They target two different antigens and recruit cytotoxic effector cells to tumour cells. For cancer immunotherapy, bispecific T cell-engaging antibodies are already well characterised. These antibodies target a tumour-associated antigen and CD3ε, the constant molecule of the T cell receptor complex. On the one hand, this study presents the development of a bispecific antibody targeting CD3ε and the rhabdomyosarcoma-associated fetal acetylcholine receptor. On the other hand, it describes a novel two-part trispecific antibody format for the treatment of leukaemia and other haematological malignancies in the context of haematopoietic stem cell transplantation (HSCT). For HSCT, an HLA-identical donor is preferred, but very rarely available. In an HLA-mismatched setting, the HLA disparity could be exploited for targeted cancer treatment. In the present study, a two-part trispecific HLA-A2 × CD45 × CD3 antibody was developed for potential cases in which the patient is HLA-A2-positive, but the donor is not. This holds true for about half the cases in Germany, since HLA-A2 is the most common HLA molecule found here. Combinatorial targeting of HLA-A2 and the leucocyte-common antigen CD45 allows for highly specific dual-antigen restricted tumour targeting. More precisely, two single-chain antibody constructs were developed: i) a single-chain variable fragment (scFv) specific for HLA-A2, and ii) a scFv against CD45, both linked to the VL and the VH domain of a CD3ε-specific antibody, respectively. It turned out that, after the concomitant binding of these constructs to the same HLA-A2- and CD45-expressing cell, the unpaired variable domains of a CD3ε-specific antibody assembled to a functional scFv. In a therapeutic situation, this assembly should exclusively occur on the recipient’s blood cancer cells, leading to T cell-mediated cancer cell destruction. In this way, a relapse of disease might be prevented, and standard therapy (radiation and chemotherapy) might be omitted. For both approaches, the antibody constructs were periplasmically expressed in E. coli, purified via His tag, and biochemically characterised. Their binding to the respective targets was proven by flow cytometry. The stimulatory properties of the antibodies were assayed by measuring IL-2 release after incubation with T cells and antigen-expressing target cells. Both the bispecific antibody against rhabdomyosarcoma and the assembled trispecific antibody against blood cancer mediated T-cell activation in a concentration-dependent manner at nanomolar concentrations. For the trispecific antibody, this effect indeed proved to be dual antigen-restricted, as it could be blocked by prior incubation of either HLA-A2- or CD45-specific scFv and did not occur on single-positive (CD45+) or double-negative (HLA-A2- CD45-) target cells. Furthermore, antibodies from both approaches recruited T cells for tumour cell destruction in vitro. N2 - Krebszellen entgehen der Immunüberwachung oftmals dadurch, dass sie zwei wichtige Komponenten der Immunabwehr, nämlich antigenpräsentierende MHC- und kostimulatorische Moleküle, herunter regeln. Zurzeit befindet sich daher eine Reihe neuartiger Anti-Krebs-Substanzen in der Entwicklung, die darauf abzielen, das Immunsystem beim Erkennen und Bekämpfen von Krebs zu unterstützen. Rekombinante bispezifische Antikörper stellen eine Gruppe solch neuartiger Therapeutika dar. Sie erkennen zwei unterschiedliche Antigene und rekrutieren gezielt zytotoxische Effektorzellen zu Tumorzellen. Zur Krebsimmuntherapie sind BiTE-Antikörper (bispecific T cell engager) bereits gut untersucht. Diese Antikörper sind gegen ein tumorassoziiertes Antigen sowie gegen CD3ε, das konstante Molekül des T Zell-Rezeptor-Komplexes, gerichtet. Diese Arbeit beschreibt zum einen die Entwicklung eines bispezifischen Antikörpers, der CD3ε und den mit Rhabdomyosarkom assoziierten fetalen Acetylcholinrezeptor erkennt. Zum anderen präsentiert sie ein neues, zweiteiliges trispezifisches Antikörperformat, das zur Behandlung von Leukämie und anderen bösartigen Erkrankungen des blutbildenden Systems im Zusammenhang mit hämatopoetischer Stammzelltransplantation (HSZT) genutzt werden könnte. Für eine HSZT wird ein HLA-identischer Spender bevorzugt. Dieser steht jedoch nur sehr selten zur Verfügung. In Fällen mit nur einer Unstimmigkeit in den HLA-Merkmalen zwischen Patient und Spender könnte diese HLA-Unstimmigkeit nun zur gezielten Krebsbehandlung ausgenutzt werden. In dieser Arbeit wurde ein trispezifisches HLA-A2 × CD45 × CD3 Antikörperkonstrukt speziell für solche Fälle entwickelt, in denen der Patient HLA-A2-positiv ist, der Spender jedoch nicht. Dies trifft in Deutschland auf ungefähr die Hälfte aller Fälle zu, da HLA-A2 hier als häufigstes HLA-Molekül vorkommt. Mit der Kombination aus HLA-A2 und dem Pan-Leukozytenmarker CD45 (leucocyte-common antigen) als Ziel, wird eine hochspezifische, von zwei Antigenen abhängige, zielgerichtete Tumoransteuerung (tumour targeting) möglich. Genauer gesagt wurden zwei Einzelketten-Antikörperkonstrukte entwickelt: i) ein HLA A2-spezifisches single-chain variable fragment (scFv) und ii) ein CD45-spezifisches scFv, jeweils verbunden mit der VL- bzw. der VH-Domäne eines CD3ε-spezifischen Antikörpers. Es stellte sich heraus, dass nach gleichzeitiger Bindung der beiden Konstrukte an dieselbe HLA-A2- und CD45-exprimierende Zelle sich die beiden einzelnen, ungepaarten variablen Domänen eines CD3ε-spezifischen Antikörpers zu einem funktionellen scFv zusammenfügen. Dieses Zusammenfügen sollte in einer therapeutischen Situation ausschließlich auf den Blutkrebszellen des Empfängers geschehen, was zur T-Zell-vermittelten Zerstörung der Krebszellen führen würde. Auf diese Weise könnte ein Rückfall der Erkrankung vermieden und eventuell sogar auf die Standardtherapie (Bestrahlung und Chemotherapie) verzichtet werden. Für die beiden beschriebenen Ansätze wurden die Antikörperkonstrukte periplasmatisch in E. coli exprimiert, über einen His-Tag aufgereinigt und biochemisch charakterisiert. Ihre Bindung an die jeweiligen Zielantigene wurde mittels Durchflusszytometrie nachgewiesen. Die stimulatorischen Eigenschaften der Antikörper wurden durch eine Messung der IL-2-Freisetzung nach Inkubation zusammen mit T-Zellen und antigenexprimierenden Zielzellen untersucht. Sowohl der gegen Rhabdomyosarkom gerichtete BiTE-Antikörper, als auch der zusammengefügte trispezifische Antikörper gegen Blutkrebs vermittelten konzentrationsabhängig eine T Zellaktivierung bei nanomolaren Konzentrationen. Für den trispezifischen Antikörper erwies sich dieser Effekt tatsächlich als abhängig von zwei Antigenen, da er durch eine vorausgehende Inkubation mit entweder einem HLA-A2- oder einem CD45-spezifischen scFv-Fragment geblockt werden konnte und nicht auf Zellen auftrat, die nur ein Antigen (CD45+) oder keins von beiden (HLA-A2- CD45-) tragen. Darüber hinaus rekrutierten die Antikörper beider Ansätze T-Zellen zur Zerstörung von Tumorzellen in vitro. KW - Immuntherapie KW - Antikörper KW - Cytotoxischer Antikörper KW - Leukämie KW - Rhabdomyosarkom KW - bispecific antibodies KW - antibody engineering KW - cancer immunotherapy KW - rekombinante Antikörper KW - bispezifische antikörper Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90174 ER - TY - THES A1 - Hauff, Cornelia T1 - Aspects of the mode of action of bispecific T cell engager (BiTE) antibodies T1 - Wirkmechanismus eines bispezifischen T cell engager Antikörpers N2 - Bispecific T cell engager (BiTE) display a novel design among the class of bispecific antibodies and hold great promise to fight diverse cancers. BiTE molecules consist of two different binding entities derived from two human IgG antibodies connected by a short peptide linker. Their binding arms are directed against the CD3e chain of the T cell receptor on T cells and against an antigen that is specific for (e.g., CD19 for lymphoma in MT103) or over-expressed on (e.g., EpCAM for epithelial cancer in MT110) tumor cells. Without requirement for pre- or co-stimulation, BiTE molecules efficiently redirect CD3+ T cells towards tumor cells expressing the relevant target antigen. Only a BiTE molecule simultaneously bound to both tumor cell and T cell activates the T cell to exert its cytolytic function resulting in tumor cell death. In T cells stimulated with both BiTE and target cells, elevated levels of caspase activation and increased expression of cytotoxic and signaling proteins are observed. These include cytolytic proteins granzyme B and perforin, activation markers CD69 and CD25 and adhesion molecules CD2 and LFA-1. Activated T cells secrete the usual mix of cytokines, among them pro-inflammatory cytokines IFN-g and TNF-a. The membrane of tumor cells expressing the relevant target antigen is perforated during the attack of BiTE-stimulated effector cells as can be concluded from adenylate kinase release from the cytosol of tumor cells. Ca2+-chelator EGTA completely blocked BiTE-mediated activation of caspases and tumor cell lysis. As perforin is strictly Ca2+-dependent, a major role for this pore-forming protein is assumed for the elimination of tumor cells via BiTE-stimulated T cells. Granzyme B and caspases are main players in BiTE-mediated elimination of tumor cells. Inhibitors of granzyme B or caspases reduce or block, respectively the activation of caspases. However, other signals of apoptosis (cleavage of PARP and fragmentation of DNA) were only reduced by granzyme B inhibitor or caspase inhibitor. Most interestingly, the lytic capacity of BiTE molecules was not impaired by granzyme B inhibitor or caspase inhibitor. It seems that there is no requirement for granzyme B and caspases to be present simultaneously. Instead the data presented provide evidence that they can be replaced one at a time by related proteins. Pre-incubation of effector cells with the glucocorticoids dexamethasone or methylprednisolone resulted in markedly decreased secretion of cytokines by T cells yet only a small reduction in the expression of activation markers and adhesion molecules on T cells and specific lysis of tumor cells upon BiTE stimulation. Soluble factors secreted in an undirected manner by BiTE-stimulated T cells do not mediate tumor cell death by themselves. Bystander cells negative for the antigen that is recognized by the BiTE molecule will not be compromised by BiTE activity. The cytokine TGF-b reduced proliferation as well as granzyme B and perforin expression of BiTE-stimulated T cells. Redirected lysis by BiTE-activated T cells was also decreased under the influence of TGF-b, however lysis was still performed at a reasonable rate (72 % of target cells). TGF-b does not exert a deleterious effect on lytic potential of BiTE-stimulated T cells. The minimal anticipated biological effect level for the BiTE MT110 was determined for the entry of MT110 into phase I clinical studies. Experiments analyzing redirected lysis of tumor cells, expression of activation marker CD25 and cytokine release by T cells revealed a MABEL value of 50 pg/ml for MT110. N2 - Bispecific T cell engager stellen mit ihrem neuartigen Design eine eigene Gruppe unter den bispezifischen Antikörpern dar und zeigen sich vielversprechend im Kampf gegen unter-schiedliche Krebsarten. BiTE Moleküle bestehen aus zwei unterschiedlichen Bindungsstellen, die von zwei humanen IgG Antikörpern abgeleitet sind und durch einen kurzen Peptidlinker verbunden sind. Die Bindungsstellen sind gerichtet gegen die CD3e Kette des T-Zell-Rezeptors auf T-Zellen und gegen ein Antigen, das auf den Tumorzellen ausschließlich (CD19 bei Lymphomen in MT103) oder in erhöhtem Maße (EpCAM bei epithelialem Krebs in MT110) exprimiert wird. BiTE Moleküle richten CD3+ T-Zellen gegen Tumorzellen, die das relevante Zielantigen präsentieren. Dabei sind sie nicht auf Vor- oder Kostimulation angewiesen. Nur wenn das BiTE Molekül gleichzeitig an Tumorzelle und T-Zelle gebunden ist, aktiviert es die T-Zelle zytolytisch zu wirken und die Tumorzelle zu töten. T-Zellen, die mit BiTE und zugleich Targetzellen stimuliert wurden, zeigen erhöhte Raten von Caspaseaktivierung und vermehrte Expression von zytotoxischen und Signalproteinen. Diese beinhalten die zytolytischen Proteine Granzyme B und Perforin, die Aktivierungs-marker CD69 und CD25 und die Adhäsionsmoleküle CD2 und LFA-1. Aktivierte T-Zellen sezernieren die übliche Mischung an Zytokinen, darunter die pro-inflammatorischen Zytokine IFN-g und TNF-a. Die Freisetzung von Adenylatkinase aus dem Zytosol von Tumorzellen lässt darauf schließen, dass die Membran von Tumorzellen, die das relevante Zielantigen exprimieren, während dem Angriff von BiTE-stimulierten Effektorzellen durchlöchert wird. Der Ca2+ Chelator EGTA verhinderte die BiTE-vermittelte Aktivierung von Caspasen und Lyse von Tumorzellen vollständig. Da Perforin in Abhängigkeit von Ca2+ wirkt, wird für dieses porenbildende Protein eine entscheidende Rolle in der Beseitigung von Tumorzellen mittels BiTE-stimulierter T-Zellen angenommen. Granzyme B und Caspasen sind die Hauptakteure in der BiTE-vermittelten Beseitigung von Tumorzellen. Inhibitoren von Granzyme B oder den Caspasen vermindern bzw. hemmen die Aktivierung von Caspasen. Andere Apoptosesignale (PARP-Spaltung und DNA-Fragmentierung) werden von Granzyme B- oder Caspase-Inhibitoren jedoch lediglich reduziert. Bemerkenswerterweise wurde die lytische Kapazität von BiTE Molekülen durch einen Granzyme B- oder Caspase-Inhibitor nicht beeinträchtigt. Es scheint, dass keine Notwendigkeit für die gleichzeitige Anwesenheit von Granzyme B und Caspasen besteht. Stattdessen erbringen die vorgestellten Ergebnisse einen Hinweis dafür, dass diese Proteine jeweils einzeln durch verwandte Proteine ersetzt werden können. Präinkubation von Effektorzellen mit den Glucocorticoiden Dexamethason oder Methylpred-nisolon bewirkte eine deutlich verminderte Zytokinsekretion von T-Zellen, jedoch nur eine geringe Abnahme der Expression von Aktivierungsmarkern und Adhäsionsmolekülen auf T-Zellen und der spezifischen Lyse von Tumorzellen in Folge von BiTE-Stimulierung. Lösliche Faktoren, die von BiTE-stimulierten T-Zellen nicht zielgerichtet abgegeben werden, vermitteln keine Lyse von Tumorzellen. Zellen, die sich in der Nachbarschaft des Tumors befinden, aber das Antigen nicht exprimieren, das vom BiTE Moleküle erkannt wird, werden daher durch BiTE Aktivität nicht in Mitleidenschaft gezogen. Das Zytokin TGF-b verminderte die Proliferation von BiTE-stimulierten T-Zellen sowie deren Expression von Granzyme B und Perforin. Die gerichtete Lyse von BiTE-aktivierten T-Zellen war unter dem Einflusss von TGF-b ebenfalls vermindert. Trotzdem erreichten die Lysisraten Werte von 72 %. TGF-b übt keinen schädlichen Effekt auf das lytische Potential von BiTE-stimulierten T-Zellen aus. Die MT110-Konzentration, bei der der geringste biologische Effekt erwartet wird, wurde für den Eintritt von MT110 in klinische Studien der Phase I bestimmt. Auf Grundlage von Experimenten zur gerichteten Lyse von Tumorzellen, zur Expression des Aktivierungsmarker CD25 auf T-Zellen und zu Freisetzung von Zytokinen aus T-Zellen, ergab sich ein MABEL-Wert von 50 pg/ml für MT110. KW - Antikörper KW - Krebs KW - Therapie KW - T-Lymphozyt KW - bispezifische Antikörper KW - Krebstherapie KW - T cell KW - bispecific antibody KW - cancer therapy Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48369 ER -