TY - JOUR A1 - Selkrig, Joel A1 - Mohammad, Farhan A1 - Ng, Soon Hwee A1 - Chua, Jia Yi A1 - Tumkaya, Tayfun A1 - Ho, Joses A1 - Chiang, Yin Ning A1 - Rieger, Dirk A1 - Pettersson, Sven A1 - Helfrich-Förster, Charlotte A1 - Yew, Joanne Y. A1 - Claridge-Chang, Adam T1 - The Drosophila microbiome has a limited influence on sleep, activity, and courtship behaviors JF - Scientific Reports N2 - In animals, commensal microbes modulate various physiological functions, including behavior. While microbiota exposure is required for normal behavior in mammals, it is not known how widely this dependency is present in other animal species. We proposed the hypothesis that the microbiome has a major influence on the behavior of the vinegar fly (Drosophila melanogaster), a major invertebrate model organism. Several assays were used to test the contribution of the microbiome on some well-characterized behaviors: defensive behavior, sleep, locomotion, and courtship in microbe-bearing, control flies and two generations of germ-free animals. None of the behaviors were largely influenced by the absence of a microbiome, and the small or moderate effects were not generalizable between replicates and/or generations. These results refute the hypothesis, indicating that the Drosophila microbiome does not have a major influence over several behaviors fundamental to the animal’s survival and reproduction. The impact of commensal microbes on animal behaviour may not be broadly conserved. KW - behavioural ecology KW - sleep Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235891 VL - 8 ER - TY - JOUR A1 - Snaebjornsson, Marteinn T A1 - Schulze, Almut T1 - Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways JF - Experimental & Molecular Medicine N2 - The metabolic rewiring that occurs during cell transformation is a hallmark of cancer. It is diverse in different cancers as it reflects different combinations of oncogenic drivers, tumor suppressors, and the microenvironment. Metabolic rewiring is essential to cancer as it enables uncontrolled proliferation and adaptation to the fluctuating availability of nutrients and oxygen caused by poor access to the vasculature due to tumor growth and a foreign microenvironment encountered during metastasis. Increasing evidence now indicates that the metabolic state in cancer cells also plays a causal role in tumor growth and metastasis, for example through the action of oncometabolites, which modulate cell signaling and epigenetic pathways to promote malignancy. In addition to altering the metabolic state in cancer cells, some multifunctional enzymes possess non-metabolic functions that also contribute to cell transformation. Some multifunctional enzymes that are highly expressed in cancer, such as pyruvate kinase M2 (PKM2), have non-canonical functions that are co-opted by oncogenic signaling to drive proliferation and inhibit apoptosis. Other multifunctional enzymes that are frequently downregulated in cancer, such as fructose-bisphosphatase 1 (FBP1), are tumor suppressors, directly opposing mitogenic signaling via their non-canonical functions. In some cases, the enzymatic and non-canonical roles of these enzymes are functionally linked, making the modulation of non-metabolic cellular processes dependent on the metabolic state of the cell. KW - cancer metabolism Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238763 VL - 50 ER - TY - JOUR A1 - Sommerfeld, Andreas A1 - Senf, Cornelius A1 - Buma, Brian A1 - D'Amato, Anthony W. A1 - Després, Tiphaine A1 - Díaz-Hormazábal, Ignacio A1 - Fraver, Shawn A1 - Frelich, Lee E. A1 - Gutiérrez, Álvaro G. A1 - Hart, Sarah J. A1 - Harvey, Brian J. A1 - He, Hong S. A1 - Hlásny, Tomáš A1 - Holz, Andrés A1 - Kitzberger, Thomas A1 - Kulakowski, Dominik A1 - Lindenmayer, David A1 - Mori, Akira S. A1 - Müller, Jörg A1 - Paritsis, Juan A1 - Perry, George L. W. A1 - Stephens, Scott L. A1 - Svoboda, Miroslav A1 - Turner, Monica G. A1 - Veblen, Thomas T. A1 - Seidl, Rupert T1 - Patterns and drivers of recent disturbances across the temperate forest biome JF - Nature Communications N2 - Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001–2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes. KW - forest ecology KW - forestry Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239157 VL - 9 ER - TY - JOUR A1 - Tauscher, Sabine A1 - Nakagawa, Hitoshi A1 - Völker, Katharina A1 - Werner, Franziska A1 - Krebes, Lisa A1 - Potapenko, Tamara A1 - Doose, Sören A1 - Birkenfeld, Andreas L. A1 - Baba, Hideo A. A1 - Kuhn, Michaela T1 - β Cell-specific deletion of guanylyl cyclase A, the receptor for atrial natriuretic peptide, accelerates obesity-induced glucose intolerance in mice JF - Cardiovascular Diabetology N2 - Background: The cardiac hormones atrial (ANP) and B-type natriuretic peptides (BNP) moderate arterial blood pressure and improve energy metabolism as well as insulin sensitivity via their shared cGMP-producing guanylyl cyclase-A (GC-A) receptor. Obesity is associated with impaired NP/GC-A/cGMP signaling, which possibly contributes to the development of type 2 diabetes and its cardiometabolic complications. In vitro, synthetic ANP, via GC-A, stimulates glucose-dependent insulin release from cultured pancreatic islets and β-cell proliferation. However, the relevance for systemic glucose homeostasis in vivo is not known. To dissect whether the endogenous cardiac hormones modulate the secretory function and/or proliferation of β-cells under (patho)physiological conditions in vivo, here we generated a novel genetic mouse model with selective disruption of the GC-A receptor in β-cells. Methods: Mice with a floxed GC-A gene were bred to Rip-CreTG mice, thereby deleting GC-A selectively in β-cells (β GC-A KO). Weight gain, glucose tolerance, insulin sensitivity, and glucose-stimulated insulin secretion were monitored in normal diet (ND)- and high-fat diet (HFD)-fed mice. β-cell size and number were measured by immunofluorescence-based islet morphometry. Results: In vitro, the insulinotropic and proliferative actions of ANP were abolished in islets isolated from β GC-A KO mice. Concordantly, in vivo, infusion of BNP mildly enhanced baseline plasma insulin levels and glucose-induced insulin secretion in control mice. This effect of exogenous BNP was abolished in β GC-A KO mice, corroborating the efficient inactivation of the GC-A receptor in β-cells. Despite this under physiological, ND conditions, fasted and fed insulin levels, glucose-induced insulin secretion, glucose tolerance and β-cell morphology were similar in β GC-A KO mice and control littermates. However, HFD-fed β GC-A KO animals had accelerated glucose intolerance and diminished adaptative β-cell proliferation. Conclusions: Our studies of β GC-A KO mice demonstrate that the cardiac hormones ANP and BNP do not modulate β-cell's growth and secretory functions under physiological, normal dietary conditions. However, endogenous NP/GC-A signaling improves the initial adaptative response of β-cells to HFD-induced obesity. Impaired β-cell NP/GC-A signaling in obese individuals might contribute to the development of type 2 diabetes. KW - cylic GMP KW - guanylyl cyclase-A KW - insulin KW - natriuretic peptides KW - obesity KW - β-cells Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176322 VL - 17 IS - 103 ER - TY - JOUR A1 - Too, Chin Chin A1 - Keller, Alexander A1 - Sickel, Wiebke A1 - Lee, Sui Mae A1 - Yule, Catherine M. T1 - Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth JF - Frontiers in Microbiology N2 - Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems. KW - tropical peat swamp forest KW - metabarcoding KW - microbial diversity and composition KW - tree species KW - depth KW - methanogens Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229000 VL - 9 ER - TY - JOUR A1 - Vujanić, Gordan M. A1 - Gessler, Manfred A1 - Ooms, Ariadne H. A. G. A1 - Collini, Paola A1 - Coulomb-l'Hermine, Aurore A1 - D'Hooghe, Ellen A1 - de Krijger, Ronald R. A1 - Perotti, Daniela A1 - Pritchard-Jones, Kathy A1 - Vokuhl, Christian A1 - van den Heuvel-Eibrink, Marry M. A1 - Graf, Norbert T1 - The UMBRELLA SIOP–RTSG 2016 Wilms tumour pathology and molecular biology protocol JF - Nature Reviews Urology N2 - On the basis of the results of previous national and international trials and studies, the Renal Tumour Study Group of the International Society of Paediatric Oncology (SIOP–RTSG) has developed a new study protocol for paediatric renal tumours: the UMBRELLA SIOP–RTSG 2016 protocol (the UMBRELLA protocol). Currently, the overall outcomes of patients with Wilms tumour are excellent, but subgroups with poor prognosis and increased relapse rates still exist. The identification of these subgroups is of utmost importance to improve treatment stratification, which might lead to reduction of the direct and late effects of chemotherapy. The UMBRELLA protocol aims to validate new prognostic factors, such as blastemal tumour volume and molecular markers, to further improve outcome. To achieve this aim, large, international, high-quality databases are needed, which dictate optimization and international harmonization of specimen handling and comprehensive sampling of biological material, refine definitions and improve logistics for expert review. To promote broad implementation of the UMBRELLA protocol, the updated SIOP–RTSG pathology and molecular biology protocol for Wilms tumours has been outlined, which is a consensus from the SIOP–RTSG pathology panel. KW - molecular biology KW - paediatric cancer KW - pathology KW - renal cancer Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233265 VL - 15 ER - TY - JOUR A1 - Wegert, Jenny A1 - Vokuhl, Christian A1 - Collord, Grace A1 - Del Castillo Velasco-Herrera, Martin A1 - Farndon, Sarah J. A1 - Guzzo, Charlotte A1 - Jorgensen, Mette A1 - Anderson, John A1 - Slater, Olga A1 - Duncan, Catriona A1 - Bausenwein, Sabrina A1 - Streitenberger, Heike A1 - Ziegler, Barbara A1 - Furtwängler, Rhoikos A1 - Graf, Norbert A1 - Stratton, Michael R. A1 - Campbell, Peter J. A1 - Jones, David TW A1 - Koelsche, Christian A1 - Pfister, Stefan M. A1 - Mifsud, William A1 - Sebire, Neil A1 - Sparber-Sauer, Monika A1 - Koscielniak, Ewa A1 - Rosenwald, Andreas A1 - Gessler, Manfred A1 - Behjati, Sam T1 - Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants JF - Nature Communications N2 - Soft tissue tumors of infancy encompass an overlapping spectrum of diseases that pose unique diagnostic and clinical challenges. We studied genomes and transcriptomes of cryptogenic congenital mesoblastic nephroma (CMN), and extended our findings to five anatomically or histologically related soft tissue tumors: infantile fibrosarcoma (IFS), nephroblastomatosis, Wilms tumor, malignant rhabdoid tumor, and clear cell sarcoma of the kidney. A key finding is recurrent mutation of EGFR in CMN by internal tandem duplication of the kinase domain, thus delineating CMN from other childhood renal tumors. Furthermore, we identify BRAF intragenic rearrangements in CMN and IFS. Collectively these findings reveal novel diagnostic markers and therapeutic strategies and highlight a prominent role of isolated intragenic rearrangements as drivers of infant tumors. KW - cancer KW - genetics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233446 VL - 9 ER - TY - JOUR A1 - Yanku, Yifat A1 - Bitman-Lotan, Eliya A1 - Zohar, Yaniv A1 - Kurant, Estee A1 - Zilke, Norman A1 - Eilers, Martin A1 - Orian, Amir T1 - Drosophila HUWE1 ubiquitin ligase regulates endoreplication and antagonizes JNK signaling during salivary gland development JF - Cells N2 - The HECT-type ubiquitin ligase HECT, UBA and WWE Domain Containing 1, (HUWE1) regulates key cancer-related pathways, including the Myc oncogene. It affects cell proliferation, stress and immune signaling, mitochondria homeostasis, and cell death. HUWE1 is evolutionarily conserved from Caenorhabditis elegance to Drosophila melanogaster and Humans. Here, we report that the Drosophila ortholog, dHUWE1 (CG8184), is an essential gene whose loss results in embryonic lethality and whose tissue-specific disruption establishes its regulatory role in larval salivary gland development. dHUWE1 is essential for endoreplication of salivary gland cells and its knockdown results in the inability of these cells to replicate DNA. Remarkably, dHUWE1 is a survival factor that prevents premature activation of JNK signaling, thus preventing the disintegration of the salivary gland, which occurs physiologically during pupal stages. This function of dHUWE1 is general, as its inhibitory effect is observed also during eye development and at the organismal level. Epistatic studies revealed that the loss of dHUWE1 is compensated by dMyc proeitn expression or the loss of dmP53. dHUWE1 is therefore a conserved survival factor that regulates organ formation during Drosophila development. KW - HECT KW - HUWE1 KW - ubiquitin KW - salivary gland KW - endoreplication KW - JNK KW - dMyc KW - dmP53 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197630 SN - 2073-4409 VL - 7 IS - 10 ER - TY - JOUR A1 - Zielewska-Büttner, Katarzyna A1 - Heurich, Marco A1 - Müller, Jörg A1 - Braunisch, Veronika T1 - Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus) JF - Remote Sensing N2 - Forest biodiversity conservation requires precise, area-wide information on the abundance and distribution of key habitat structures at multiple spatial scales. We combined airborne laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree characteristics and quantifying multi-scale habitat requirements using the example of the three-toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park (Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant on bark beetles dwelling in dead or dying trees. While previous studies showed a positive relationship between the TTW presence and the amount of deadwood as a limiting resource, we hypothesized a unimodal response with a negative effect of very high deadwood amounts and tested for effects of substrate quality. Based on 104 woodpecker presence or absence locations, habitat selection was modelled at four spatial scales reflecting different woodpecker home range sizes. The abundance of standing dead trees was the most important predictor, with an increase in the probability of TTW occurrence up to a threshold of 44–50 dead trees per hectare, followed by a decrease in the probability of occurrence. A positive relationship with the deadwood crown size indicated the importance of fresh deadwood. Remote sensing data allowed both an area-wide prediction of species occurrence and the derivation of ecological threshold values for deadwood quality and quantity for more informed conservation management. KW - deadwood KW - standing deadwood KW - dead tree KW - snags KW - three-toed woodpecker (Picoides tridactylus) KW - habitat suitability model (HSM) KW - habitat requirements KW - airborne laser scanning (ALS) KW - CIR aerial imagery Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197565 SN - 2072-4292 VL - 10 IS - 12 ER - TY - JOUR A1 - Zoltner, Martin A1 - Krienitz, Nina A1 - Field, Mark C. A1 - Kramer, Susanne T1 - Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA JF - PLoS Neglected Tropical Diseases N2 - Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation through interactions with both the poly(A) tail and eIF4F complex. Many organisms have several paralogs of PABPs and eIF4F complex components and it is likely that different eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation, polysomes dissociate and the majority of mRNAs, most translation initiation factors and PABP2 reversibly localise to starvation stress granules. To understand this more broadly we identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purification-mass spectrometry. PABP1 very specifically interacts with the previously identified interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a larger set of interactors including most translation initiation factors and most prominently eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1, whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Significantly, PABP1 and associated proteins are largely excluded from starvation stress granules, but PABP2 and most interactors translocate to granules on starvation. We suggest that PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a small and distinct set of proteins unable to enter the dominant pathway into starvation stress granules and localises preferentially to a subfraction of small polysomes. By contrast PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins, enters stress granules and distributes over the full range of polysomes. KW - Trypanosoma KW - mRNA KW - T. brucei KW - PABPs Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177126 VL - 12 IS - 7 ER -