TY - JOUR A1 - Xu, Li A1 - He, Jianzheng A1 - Kaiser, Andrea A1 - Gräber, Nikolas A1 - Schläger, Laura A1 - Ritze, Yvonne A1 - Scholz, Henrike T1 - A Single Pair of Serotonergic Neurons Counteracts Serotonergic Inhibition of Ethanol Attraction in Drosophila JF - PLoS ONE N2 - Attraction to ethanol is common in both flies and humans, but the neuromodulatory mechanisms underlying this innate attraction are not well understood. Here, we dissect the function of the key regulator of serotonin signaling—the serotonin transporter–in innate olfactory attraction to ethanol in Drosophila melanogaster. We generated a mutated version of the serotonin transporter that prolongs serotonin signaling in the synaptic cleft and is targeted via the Gal4 system to different sets of serotonergic neurons. We identified four serotonergic neurons that inhibit the olfactory attraction to ethanol and two additional neurons that counteract this inhibition by strengthening olfactory information. Our results reveal that compensation can occur on the circuit level and that serotonin has a bidirectional function in modulating the innate attraction to ethanol. Given the evolutionarily conserved nature of the serotonin transporter and serotonin, the bidirectional serotonergic mechanisms delineate a basic principle for how random behavior is switched into targeted approach behavior. KW - attraction KW - ethanol KW - Drosophila melanogaster KW - serotonin transporter Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166762 VL - 11 IS - 12 ER - TY - THES A1 - Schubert, Frank Klaus T1 - The circadian clock network of \(Drosophila\) \(melanogaster\) T1 - Das Uhrneuronennetzwerk von \(Drosophila\) \(melanogaster\) N2 - All living organisms need timekeeping mechanisms to track and anticipate cyclic changes in their environment. The ability to prepare for and respond to daily and seasonal changes is endowed by circadian clocks. The systemic features and molecular mechanisms that drive circadian rhythmicity are highly conserved across kingdoms. Therefore, Drosophila melanogaster with its relatively small brain (ca. 135.000 neurons) and the outstanding genetic tools that are available, is a perfect model to investigate the properties and relevance of the circadian system in a complex, but yet comprehensible organism. The last 50 years of chronobiological research in the fruit fly resulted in a deep understanding of the molecular machinery that drives circadian rhythmicity, and various histological studies revealed the neural substrate of the circadian system. However, a detailed neuroanatomical and physiological description on the single-cell level has still to be acquired. Thus, I employed a multicolor labeling approach to characterize the clock network of Drosophila melanogaster with single-cell resolution and additionally investigated the putative in- and output sites of selected neurons. To further study the functional hierarchy within the clock network and to monitor the “ticking clock“ over the course of several circadian cycles, I established a method, which allows us to follow the accumulation and degradation of the core clock genes in living brain explants by the means of bioluminescence imaging of single-cells. N2 - Alle lebenden Organismen benötigen Mechanismen zur Zeitmessung, um sich auf periodisch wiederkehrende Umweltveränderungen einstellen zu können. Zirkadiane Uhren verleihen die Fähigkeit, tages- und jahreszeitliche Veränderungen vorauszuahnen und sich an diese anzupassen. Die Eigenschaften des zirkadianen Systems, als auch dessen molekularer Mechanismus scheinen über sämtliche Taxa konserviert zu sein. Daher bietet es sich an, die leicht handhabbare Taufliege Drosophila melanogaster als Modellorganismus zu benutzen. Das relativ kleine Gehirn (ca. 135.000 Neurone) und die herausragende genetische Zugänglichkeit der Fliege prädestinieren sie dazu, das zirkadiane System in einem komplexen, aber dennoch überschaubaren Kontext zu untersuchen. Die vergangenen 50 Jahre chronobiologischer Forschung an Drosophila führten zu einem tiefgreifenden Verständnis der molekularen Mechanismen, die für tageszeitliche Rhythmizität verantwortlich sind. Anhand zahlreicher histologischer Untersuchungen wurde die neuronale Grundlage, das Uhrneuronennetzwerk im zentralen Nervensystem, beschrieben. Nichtsdestotrotz, gibt es noch immer keine detaillierte neuroanatomische und physiologische Charakterisierung der Uhrneurone auf Einzelzellebene. Daher war das Ziel der vorliegenden Arbeit die umfangreiche Beschreibung der Einzelzellanatomie ausgewählter Uhrneurone sowie die Identifikation mutmaßlicher post- und präsynaptischer Verzweigungen. Darüber hinaus war es mir möglich, eine Methode zur Messung von Biolumineszenzrhythmen in explantierten lebenden Gehirnen zu etablieren. Mit einem Lumineszenzmikroskop können die Proteinoszillationen einzelner Uhrneurone über die Dauer mehrerer zirkadianer Zyklen aufgezeichnet werden, wodurch neue funktionale Studien ermöglicht werden. KW - Taufliege KW - Chronobiologie KW - Tagesrhythmus KW - Neuroanatomie KW - Drosophila melanogaster KW - circadian rhythms KW - single cell anatomy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157136 ER - TY - THES A1 - Schubert, Alice T1 - Immunhistochemische und funktionelle Charakterisierung der Serin/Arginin-Proteinkinase SRPK79D mit Identifizierung von Interaktionspartnern in Drosophila melanogaster T1 - Immunohistochemical and functional characterisation of the serine/arginine protein kinase SRPK79D with identification of interaction partners in Drosophila melanogaster N2 - Auf der Suche nach Mutanten mit einer vom Wildtyp abweichenden Verteilung des Aktive Zone-Proteins Bruchpilot wurde die Serin/Arginin-Proteinkinase SRPK79D identifiziert. Hier zeigte sich, dass die Mutation im Srpk79D-Gen zu einer Agglomeration von Bruchpilot in den larvalen segmentalen und intersegmentalen Nerven führt. In der vorliegenden Arbeit sollte die SRPK79D genauer charakterisiert werden. Nach Präadsorptionen und Affinitätsreinigungen von in einer früheren Arbeit erzeugten Antiseren, gelang es die Lokalisation der überexprimierten SRPK79D-GFP-Isoformen zu bestimmen. Dabei zeigte sich, dass keines der Antiseren die endogene Kinase im Western Blot oder immunhistocheimisch detektieren konnte. Dies legt den Schluss nahe, dass die Expression der SRPK79D in einer geringen Konzentration erfolgt. Es war jedoch möglich die endogene SRPK79D-PC-Isoform mittels einer Immunpräzipitation soweit anzureichern, dass sie im Western Blot nachweisbar war. Für die SRPK79D-PB-Isoform gelang dies allerdings nicht. Anhand von larvalen Nerv-Muskel-Präparaten konnte gezeigt werden, dass die panneural überexprimierte SRPK79D-PC-GFP-Isoform an die Aktiven Zone transportiert wird und dort mit Bruchpilot, sowie den Interaktionspartnern von Bruchpilot Liprin-α und Rab3 kolokalisiert. Außerdem liegt sie diffus im Zytoplasma von neuronalen Zellkörpern vor. In adulten Gehirnen lokalisiert die transgen überexprimierte SRPK79D-PC-GFP im Fanshaped body, Ringkomplex und in neuronalen Zellkörpern. Die panneural überexprimierte SRPK79D-PB-GFP-Isoform liegt im larvalen und adulten Gehirn lokal im Zytoplasma der Perikaryen akkumuliert vor und wird nicht an die Aktive Zone transportiert. Das PB-Antiserum erkennt im adulten Gehirn neuronale Zellkörper und das Neuropil in der Calyxregion der Pilzkörper. Immunhistochemische Färbungen von larvalen Nerv-Muskel-Präparaten mit verschiedenen Antikörpern gegen neuronale Proteine belegen, dass die Agglomerate in der Srpk79D-Mutante für Bruchpilot spezifisch sind. Es konnten bisher keine weiteren Komponenten der Agglomerate detektiert werden. Auch ein genereller axonaler Defekt konnte durch Färbungen gegen CSP, Synaptotagmin und Experimenten mit dem Mitochondrienfarbstoff MitoTracker® FM Green ausgeschlossen werden. Die quantitative Auswertung der Präparate zeigte, dass die Morphologie der synaptischen Boutons und die Zahl der Aktiven Zonen durch die Mutation im Srpk79D-Gen nicht beeinflusst werden. Um gesicherte Kenntnis darüber zu erlangen, ob die Mutation im Srpk79D-Gen die beobachteten Phänotypen verursacht, wurden Rettungsexperimente durchgeführt. Es konnte sowohl für das hypomorphe Srpk79DP1-Allel, als auch für die Nullmutante Srpk79DVN eine nahezu vollständige Rettung des Agglomerat-Phänotyps mit der panneural exprimierten SRPK79D-PF- oder der SRPK79D-PB-Isoform erreicht werden. Aus diesen Ergebnissen folgt, dass beide Isoformen der SRPK79D in der Lage sind den Bruchpilot-Agglomerat-Phänotyp zu retten, die Rettung der Verhaltensdefizite jedoch alle Isoformgruppen benötigen. Um zu untersuchen, ob der Agglomerations-Phänotyp der Srpk79D-Mutanten auf einer Überexpression des Bruchpilotgens oder auf Fehlspleißen seiner prä-mRNA beruht, wurden Immunpräzipitationen, semiquantitative RT-PCRs und Real Time-PCRs durchgeführt. Ausgehend von den Ergebnissen kann eine mögliche Überexpression bzw. Spleißdefekte von Bruchpilot weitgehend ausgeschlossen werden. Die simultane Überexpression von SRPK79D und Bruchpilot konnte den Phänotyp der Bruchpilot-Überexpression nicht retten. Anhand der stimulated emission depletion-Mikroskopie konnte gezeigt werden, dass die gebildeten Agglomerate das charakteristische Donut-förmige Muster der T-bars zeigen und wahrscheinlich als fusionierte Ketten von T-bars in den larvalen Nerven vorliegen. Beim in vivo Imaging Versuch konnte demonstriert werden, dass das verkürzte Bruchpilot-D3-Strawberry in die Bruchpilot-Agglomerate der Srpk79D-Nullmutante eingebaut wird und dass größere Agglomerate unbewegt im Nerv verharren. Der anterograde und retrograde Transport kleinerer Agglomerate konnte verzeichnet werden. Bei CytoTrap-Yeast-two-hybrid-Experimenten konnten für die SRPK79D-PB Isoform vier potentielle Interaktionspartner identifiziert werden: das Hitzeschockprotein Hsp70Bbb, die mitochondriale NADH-Dehydrogenase mt:ND5, das large ribosomal RNA Gen in Mitochondrien und das am Spleißen beteiligte Protein 1.3CC/Caper. Die Sequenzierung zeigte, dass nur das letzte Exon von Caper im pMyr-Vektor vorliegt. Der für die PC-Isoform durchgeführte CytoTrap-Versuch ergab nur Temperatur-Revertanten. SR-Proteinkinasen phosphorylieren die RS-Domäne von SR-Proteinen und sind dadurch an der Regulation des konstitutiven und alternativen Spleißens beteiligt. Somit stellen die acht identifizierten SR-Proteine in Drosophila potentielle Interaktionspartner der SRPK79D dar. Die durch RNAi-vermittelte Reduktion von sieben SR-Proteinen führte zu keiner Agglomeration von Bruchpilot. Jedoch führte die RNAi-vermittelte Reduktion des SR-Proteins Spleißfaktor 2 (SF2) zu kleineren Bruchpilot-Agglomeraten in den axonalen Nerven. SF2 ist selbst kein Bestandteil der Agglomerate der Srpk79D-Nullmutante. Die Überexpression von SF2 führt wahrscheinlich zu einem axonalen Transportdefekt, wie die Färbung gegen das Cysteine string protein zeigte. Weiterhin führt die Überexpression zu einer Akkumulation von SF2 in larvalen Axonen und im adulten Gehirn der Fliegen. SF2 ist nicht nur in Zellkernen sämtlicher Zellen nachweisbar, sondern es konnte auch ein spezifisches Signal im subsynaptischen Retikulum der Postsynapse detektiert werden, wie die Färbungen gegen Disc large bestätigten. N2 - In a Screen for mutations which affect the distribution of the active zone protein Bruchpilot, the serine/arginine protein kinase 79D (SRPK79D) was identified. A mutation in the Srpk79D gene leads to conspicuous agglomeration of Bruchpilot in the larval segmental and intersegmental nerves. The aim of this thesis was to characterize the function of SRPK79D and to identify its interaction partners. The isoform specific antisera which were generated in an earlier PhD thesis recognized only the pan-neuraly overexpressed GFP-tagged SRPK79D isoforms in Western blots and immunhistochemical stainings. After preabsorption and affinity purification the antisera could uncover the localization of the overexpressed SRPK79D-GFP. Without enrichment of the endogenous SRPK79D concentration seems to be too low to be detected with the antisera. However, the endogenous SRPK79D-PC isoform could be detected in a Western blot after immunoprecipitation, but not the SRPK79D-PB isoform. The panneural overexpressed SRPK79D-PC-GFP isoform co-localizes with Bruchpilot as well as with the Bruchpilot interaction partners Liprin-α and Rab3 at active zones and showed a diffuse pattern in the cytoplasm of neuronal cell bodies. In adult brains the panneural overexpressed SRPK79D-PC isoform is detectable in the fanshaped body, ring complex and neuronal cell bodies. The panneural overexpressed SRPK79D-PB isoform is not present at the active zone but is detectable in larval and adult CNS accumulating in discrete spots in the cytoplasm of neuronal cells. The panneural overexpressed SRPK79D-PB isoform is also present in the neuronal cell bodies and calyces of the mushroom body. Larval dissections followed by stainings with different antibodies against synaptic proteins showed that the agglomerates in the Srpk79D mutants are quite specific for Bruchpilot. No other components of the agglomerates could be revealed until now. General impairments of axonal transport could be excluded by stainings against cysteine string protein (CSP), Synaptotagmin, and experiments with the dye MitoTracker® Green FM. These synaptic proteins are uniformly distributed along the larval nerves. The quantification of boutons revealed that the basic synaptic structure is not altered in Srpk79D-mutants. Stainings on frozen head sections of null mutant Srpk79D revealed a spot like Bruchpilot accumulation in the antennal nerves. The mutation of Srpk79D causes behavioral deficits in adult flies as well as a shortened life span. In order to test if expression of either isoform (SRPK79D-PC/PF or –PB) is able to rescue the obtained phenotypes, rescue experiments were performed. A nearly complete rescue of the agglomerate phenotype was achieved with both SRPK79D isoforms. Rescue experiments for the observed behavioral phenotype in the null mutant background did not significant by improve the defect, neither when using the pannreural driver lines elav-GAL4 nor the newly generated nSyb-GAL4. Alkaline Phosphatase treatment followed by 1D- or 2D-gelelecrophoresis could not detect a possible phosphorylation of SRPK79D. Also the vesicle-associated protein Synapsin showed a normal isoform pattern which indicates that Synapsin is not a substrate for SRPK79D. In experiments to detect overexpression or splicing defects of the active zone protein Bruchpilot as possible cause for the agglomeration phenotype in mutant Srpk79D animals, immunoprecipitations, semiquantitative RT-PCRs and Real Time-PCRs were performed. The results showed that overexpression or splicing deficits could be largely excluded. In stainings with the new Bruchpilot antisera N-Term and D2 the staining pattern did not differ from the nc82 staining showing that the PF isoform of Bruchpilot is not forming separate agglomerates in Srpk79DVN mutants. The overexpression of D2-4 and D1-3, truncated Bruchpilot proteins without either the N- or C-terminus, respectively, showed an agglomeration of the corresponding proteins in larval and adult CNS. However the overexpression of D1-3 is not affecting the endogenous Bruchpilot distribution. The simultaneous overexpression of SRPK79D and Bruchpilot could not rescue the phenotype caused by Bruchpilot overexpression. With the stimulated emission depletion microscope the pattern of the Bruchpilot agglomerates in the Srpk79DVN mutant revealed electron-dense donut-shaped structures in larval nerves, presumably fused T-bars. With in vivo imaging experiments anterograde as well as retrograde movement of D3-labeled agglomerates in the Srpk79DVN mutant was observed whereas large agglomerates are immobile. To identify substrates or interaction partners of SRPK79D the Yeast-two-hybrid screen CytoTrap was performed. The CytoTrap screen for the SRPK79D-PB isoform identified four interaction partners: the heat shock protein Hsp70Bbb, the mitochondrial NADH-Dehydrogenase mt:ND5, the large ribosomal RNA gene in mitochondria and 1.3CC/Caper. Caper is involved in splicing via the spliceosome. Sequencing revealed that the pMyr vector includes only the last exon of Caper. The performed CytoTrap for the RC-Isoform detected only temperature revertants. The RNAi mediated knock down of each of the eight known SR proteins in Drosophila showed that seven of them do not produce a phenotype whereas the reduction of SF2 leads to Bruchpilot agglomerates in larval nerves. The SR-Protein SF2 is not included in the agglomerates of the Srpk79D mutant but showed expression in nuclei of all cell types. The overexpression of SF2 leads to an agglomeration of SF2 in the larval nerves probably due to an impairment of general axonal transport. SF2 is not only a nuclear protein; it is also associated with post synaptic structures. KW - Taufliege KW - Serin KW - Arginin KW - Proteinkinasen KW - RNS-Spleißen KW - Genmutation KW - Drosophila melanogaster KW - SRPK79D KW - Serin-Arginin Proteinkinase KW - Spleißen KW - Bruchpilot KW - Drosophila melanogaster KW - SRPK79D KW - serine-arginine protein kinase KW - splicing KW - Bruchpilot Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53841 ER - TY - JOUR A1 - Schlichting, Matthias A1 - Rieger, Dirk A1 - Cusumano, Paola A1 - Grebler, Rudi A1 - Costa, Rodolfo A1 - Mazzotta, Gabriella M. A1 - Helfrich-Förster, Charlotte T1 - Cryptochrome interacts with actin and enhances eye-mediated light sensitivity of the circadian clock in Drosophila melanogaster JF - Frontiers in Molecular Neuroscience N2 - Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals, CRYs are expressed in the eyes and in the clock neurons that control sleep/wake cycles and are implied in the generation and/or entrainment of circadian rhythmicity. Moreover, CRYs are sensing magnetic fields in insects as well as in humans. Here, we show that in the fruit fly Drosophila melanogaster CRY plays a light-independent role as “assembling” protein in the rhabdomeres of the compound eyes. CRY interacts with actin and appears to increase light sensitivity of the eyes by keeping the “signalplex” of the phototransduction cascade close to the membrane. By this way, CRY also enhances light-responses of the circadian clock. KW - Drosophila melanogaster KW - cryptochrome KW - F-actin KW - phototransduction KW - activity rhythms Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177086 VL - 11 IS - 238 ER - TY - JOUR A1 - Ruppert, Manuela A1 - Franz, Mirjam A1 - Saratis, Anastasios A1 - Escarcena, Laura Velo A1 - Hendrich, Oliver A1 - Gooi, Li Ming A1 - Schwenkert, Isabell A1 - Klebes, Ansgar A1 - Scholz, Henrike T1 - Hangover links nuclear RNA signaling to cAMP regulation via the phosphodiesterase 4d ortholog dunce JF - Cell Reports N2 - The hangover gene defines a cellular stress pathway that is required for rapid ethanol tolerance in Drosophila melanogaster. To understand how cellular stress changes neuronal function, we analyzed Hangover function on a cellular and neuronal level. We provide evidence that Hangover acts as a nuclear RNA binding protein and we identified the phosphodiesterase 4d ortholog dunce as a target RNA. We generated a transcript-specific dunce mutant that is impaired not only in ethanol tolerance but also in the cellular stress response. At the neuronal level, Dunce and Hangover are required in the same neuron pair to regulate experience-dependent motor output. Within these neurons, two cyclic AMP (cAMP)-dependent mechanisms balance the degree of tolerance. The balance is achieved by feedback regulation of Hangover and dunce transcript levels. This study provides insight into how nuclear Hangover/RNA signaling is linked to the cytoplasmic regulation of cAMP levels and results in neuronal adaptation and behavioral changes. KW - biology KW - hangover KW - dunce KW - Dunce isoforms KW - PDE4d KW - cellular stress KW - alcohol tolerance KW - Drosophila melanogaster Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171950 VL - 18 IS - 2 ER - TY - JOUR A1 - Ruf, Franziska A1 - Fraunholz, Martin A1 - Öchsner, Konrad A1 - Kaderschabeck, Johann A1 - Wegener, Christian T1 - WEclMon - A simple and robust camera-based system to monitor Drosophila eclosion under optogenetic manipulation and natural conditions JF - PLoS ONE N2 - Eclosion in flies and other insects is a circadian-gated behaviour under control of a central and a peripheral clock. It is not influenced by the motivational state of an animal, and thus presents an ideal paradigm to study the relation and signalling pathways between central and peripheral clocks, and downstream peptidergic regulatory systems. Little is known, however, about eclosion rhythmicity under natural conditions, and research into this direction is hampered by the physically closed design of current eclosion monitoring systems. We describe a novel open eclosion monitoring system (WEclMon) that allows the puparia to come into direct contact with light, temperature and humidity. We demonstrate that the system can be used both in the laboratory and outdoors, and shows a performance similar to commercial closed funnel-type monitors. Data analysis is semi-automated based on a macro toolset for the open imaging software Fiji. Due to its open design, the WEclMon is also well suited for optogenetic experiments. A small screen to identify putative neuroendocrine signals mediating time from the central clock to initiate eclosion showed that optogenetic activation of ETH-, EH and myosuppressin neurons can induce precocious eclosion. Genetic ablation of myosuppressin-expressing neurons did, however, not affect eclosion rhythmicity. KW - chronobiology KW - infrared radiation KW - light pulses KW - molting KW - Drosophila melanogaster KW - optogenetics KW - eclosion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170755 VL - 12 IS - 6 ER - TY - THES A1 - Riemensperger, Thomas T1 - Untersuchung prädiktiver Eigenschaften des dopaminergen Systems von Drosophila melanogaster mittels genetisch kodierter Calcium Sensoren T1 - Analysis of predictive features in the dopaminergic System of Drosophila melanogaster using genetically encoded Calcium Sensors N2 - Die Technik des optischen Imaging unter Verwendung DNA-codierter Sensoren ermöglicht es, Messungen neuraler Aktivitäten in genetisch definierten Populationen von Neuronen durchzuführen. In der Vielzahl der verschiedenen entwickelten Sensoren konnten die Calciumsensoren bisher das beste Verhältnis zwischen Signal und Rauschen und die beste zeitliche Auflösung aufzeigen. Hierbei handelt es sich in erster Linie um zwei Typen von Sensoren, zum einen ratiometrische Sensoren, deren Signal auf einem Fluoreszenz Resonanz Energie Transfer (FRET) basiert, und zum anderen um zirkulär permutierte Sensoren, die auf einem modifizierten GFP-Molekül basieren, wobei das Signal auf einer veränderten Protonierung des Chromophors beruht. Beide Arten dieser Sensoren wurden schon erfolgreich zum Messen neuraler Aktivitäten in Nervensystemen verschiedener Tierarten verwendet. Ein Teil dieser Arbeit bestand darin, zu untersuchen, welche Sensoren sich für die Messung an einem lebenden Organismus am besten eignen. Hierfür wurden die Eigenschaften von vier verschiedenen FRET basierten Sensoren und zwei der zyklisch permutierten Sensoren nach Expression im zentralen Nervensystem von Drosophila charakterisiert. Die Sensoren wurden in Neuronen zweiter und dritter Ordnung des olfaktorischen Signalwegs exprimiert und ihre Antworten auf physiologische Duftstimulation oder artifiziell induzierte Depolarisation des Gehirns untersucht. Während die calciumabhängigen Signale der zyklisch permutierten Sensoren in der Regel größer waren als die der FRET basierten Sensoren, zeichneten sich letztere durch ein besseres Signal zu Rausch-Verhältnis aus, wenn Bewegungen der fluoreszierenden Strukturen nicht zu vermeiden waren. Dies war auch der ausschlaggebende Grund für die Verwendung eines FRET basierten Sensors im anschließenden Teil der Arbeit. Im zweiten Teil der Arbeit wurde der Effekt untersucht, den die Paarung eines neutralen Stimulus mit einem bestrafenden Stimulus auf dopaminerge Neurone hat. Eine solche Paarung kann zu einer klassischen Konditionierung führen, einer einfachen Form des Lernens, in welcher das Tier einem ursprünglich neutralen Stimulus einen Wert zuordnet, und dadurch sein Verhalten dem Stimulus gegenüber ändert. Die olfaktorische klassische Konditionierung in Drosophila wird seit vielen Jahren intensiv untersucht, um die molekularen und neuronalen Grundlagen von Lernen und Gedächtnis zu charakterisieren. Dabei hat sich gezeigt, dass besonders die Pilzkörper von essentieller Bedeutung für die Ausbildung eines olfaktorischen Gedächtnisses sind. Während das olfactorische System bei Insekten bereits detailiert analysiert wurde, ist über die Neurone, die den bestrafenden Stimulus vermitteln, nur sehr wenig bekannt. Unter Anwendung des funktionellen optischen Calcium Imaging konnte im Rahmen der Arbeit gezeigt werden, dass die Projektionen von dopaminergen Neuronen im Bereich der Loben der Pilzkörper schwach auf die Präsentation eines Duftes, jedoch sehr stark auf eine Stimulation durch einen Elektroschock antworten. Nach mehrmaliger Paarung eines Duftes mit einem Elektroschock während eines Trainings, verlängert sich die Aktivität dieser dopaminergen Neurone auf den bestraften Duft hin im Test ohne Elektroschock drastisch, während die Antwort auf den Kontrollduft keine signifikanten Veränderungen aufweist. Während bei Säugetieren belohnende Reize bei appetitiven Lernvorgängen über dopaminerge Neurone vermittelt werden, spielen bei Drosophila diese Neurone offensichtlich eine Rolle bei der aversiven Konditionierung. Jedoch blieb, auch wenn sich die Rolle des Dopamins im Laufe der Evolution geändert zu haben scheint, die Fähigkeit dieses Neuronentyps, nicht nur auf einen eintreffenden verstärkenden Stimulus zu reagieren, sondern diesen auch vorhersagen zu können, zwischen Säugern und Drosophila erhalten. N2 - The technique of optical in vivo imaging using genetically encoded fluorescent sensors in transgenic animals has paved the way for real-time monitoring of spatio-temporal activity in the brain. Among the different fluorescent probes, the calcium sensors produce signals with the highest signal to noise ratio and the best temporal resolution. Basically these sensors can be split into two groups, those based on a FRET-effect between two modified green fluorescent proteins (GFPs) and those which make use of on a circular permutation of GFP. Both types have successfully been used for measuring neuronal activity in various species. One part of the present work was to test which of these different sensor types are best suited for an in vivo situation. For this, two members of the class of circularly permutated sensors and four members of the class of FRET based sensors were tested and compaired in Drosophila. Each sensor was expressed in second and third order neurons of the olfactory pathway and the calcium activity evoked by artificial depolarisation or physiological odour stimuli was recorded. Whereas the Calcium dependent change in signal intensity is substantially higher for the circularly permutated sensors, the FRET based sensors tested in this work showed a better signal to noise ratio when movement of the brain structures under investigation could not be prevented. For this reason a FRET based sensor was chosen to measure the activity of dopaminergic neuronsin a classical conditioning paradigm. In the second part of this work the effect of pairing a neutral stimulus with a negative reinforcer (in this case an electric shock) on the activity of dopaminergic neurons was investigated. The pairing of these two stimuli can lead to classical conditioning, a simple form of learning in which the animal assigns a value (positive or negative) to the formerly neutral stimulus. Olfactory classical conditioning in Drosophila melanogaster is a prime model for the analysis of the molecular and neuronal substrate of this type of learning and memory. In particular the mushroom bodies have been shown to be essential for olfactory memory formation. While the olfactory system of insects has been extensively characterized little is known about the neurons that mediate the reinforcing stimulus. Using the technique of optical calcium imaging it was possible to show that dopaminergic projections in the region of the mushroom body lobes responded weakly to odour presentations, but strongly to the stimulation by an electric shock. After pairing for several times one of two odours presented to the fly with an electric shock (training), the activity of the dopaminergic neurons to the punished odour is significantly prolonged in a test after the training. No change is observed after the training for the control odour that was not paired with the electric shock. Whereas in mammals rewarding stimuli are mediated by dopaminergic neurons, in Drosophila this catecholamine apparently plays a role in mediating aversive reinforcement. Even though the role of dopamine seems to have changed during evolution the capability of dopaminergic neurons to predict a reinforcing stimulus appears to be conserved between Drosophila and mammals. KW - Taufliege KW - Dopaminerge Nervenzelle KW - Calcium KW - Calcium imaging KW - Sensoren KW - Dopamin KW - Drosophila melanogaster KW - prädiktive Eigenschaften KW - Calcium imaging KW - Sensors KW - Dopamine KW - Drosophila melanogaster KW - predictive features Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19041 ER - TY - THES A1 - Reisch, Natasa T1 - Das Cysteine-String-Protein in Drosophila melanogaster: Molekulare und funktionelle Analyse verschiedener CSP-Mutanten; Ein Modell zur räumlich und zeitlich kontrollierten CSP-Expression T1 - The cysteine string protein in Drosophila melanogaster: Molecular and functional analysis of different CSP-mutants; A model for spatial and temporal controlled CSP-expression N2 - Die Exozytose von Neurotransmittern und Peptiden während der Verarbeitung und Weiterleitung von Reizen im Nervensystem wird durch eine komplexe Maschinerie von Proteinen reguliert. Das konservierte Cysteine String Protein (CSP), das gebunden an synaptische und andere sekretorische Vesikel vorliegt, konnte in den vergangenen Jahren als Teil in diesen Prozess eingeordnet werden. Die Frage nach der genauen Funktion von CSP während der Exozytose ist allerdings weiterhin offen. CSP-Nullmutanten in Drosophila melanogaster zeigen temperatursensitive Paralyse und eine extrem verkürzte Lebenserwartung, gepaart mit verminderter Fertilität. In larvalen Nerv-Muskel Präparaten kommt es bei Temperaturen über 29°C zu einem reversiblen Block der elektrophysiologisch messbaren synaptischen Transmission. Die Primärstruktur des Cysteine String Proteins kann in folgende konservierte Sequenzabschnitte unterteilt werden: eine N-terminale Protein Kinase A Phosphorylierungsstelle, eine Region mit Homologie zu einer charakteristischen Domäne von DnaJ-Proteinen (DnaJ-Domäne), einen als Linkerregion bezeichneten Abschnitt, eine cysteinreiche Sequenz, die bei Drosophila aus dem namensgebenden Strang von 11 aufeinanderfolgenden Cysteinen flankiert von 2 Cysteinpaaren besteht, und einen schwächer konservierten C-Terminus, in dem sich auch einzelne Spleißvarianten unterscheiden. Versuche mit Vertebraten konnten zeigen, dass CSP in einem trimeren Komplex aus Hsc70/CSP/SGT vorkommt und bei der Exozytose wahrscheinlich als molekulares Co-Chaperon wirkt. Der Cysteinstrang liegt mehrfach palmityliert vor und ist für die Zielfindung des Proteins zur Vesikelmembran essentiell. In vorangegangenen Arbeiten wurde begonnen, bei Drosophila durch gezielte Mutagenese und Keimbahntransformation die Rolle des Cysteinstrangs, der Linkerregion und des C-Terminus für die Funktion des CSP zu analysieren. In der vorliegenden Dissertation wurden in transgenen Fliegen die Eigenschaften von Isoformen mit vier unterschiedlich mutierten Varianten des Cysteinstrangs (CSLP, SCSP, CLP, SSP) und je Deletionen in der Linkerregion (LΔ8) und im C-terminalen Bereich (CΔ27) charakterisiert. Die subzelluläre Verteilung und veränderte Membranbindungseigenschaften dieser Proteine wurden mithilfe von Membranfraktionierung und Glycerindichtegradienten von Homogenaten der transgenen Mutanten aufgezeigt. Die Isoformen CLP und SSP sind aufgrund der fehlenden Palmitylierung nicht an die Membran der synaptischen Vesikel gebunden, während die Isoform CSLP sowohl in der Vesikelmembranfraktion als auch als lösliches Protein nachgewiesen werden kann. Die flankierenden Cysteinpaare und die verbliebenen Cysteine in den Isoformen CSLP und SCSP erfüllen offenbar noch teilweise die Aufgabe des Cysteinstrangs bei der Zielfindung der Proteine. Eine Depalmitylierung mit Hydroxylamin löst das verkürzte SCSP Protein ebensowenig aus der Membran wie das intakte CSP. Die Ergebnisse dieser Untersuchungen stehen im Einklang mit immunhistochemischen Befunden. Die Deletion bzw. Substitution der zentralen 11 Cysteine in den Isoformen CSLP, CLP und SSP äußert sich in den transgenen Fliegen in einer gleichmäßigeren Verteilung der Proteine, die nicht mehr wie im Wildtyp auf das synaptische Neuropil beschränkt ist. Keine der Isoformen mit verändertem Cysteinstrang ist in der Lage die Funktion des wildtypischen CSP zu übernehmen, da die adulten transgenen Fliegen den temperatursensitiven Phänotyp und eine kurze Lebensdauer ähnlich den Csp-Nullmutanten zeigen. Die Proteinisoformen LΔ8 und CΔ27 dagegen lassen in den biochemischen Analysen keine Abweichung vom Wildtyp erkennen und weisen auch eine wildtypische Verteilung in Kryostat-Gehirnschnitten auf. Die Deletion in der Linkerregion in der Isoform LΔ8 scheint die Funktion des CSPs allerdings einzuschränken, da die entsprechenden transgenen Fliegen bereits bei 38°C, wildtypische Tiere dagegen erst bei 40°C paralysieren. Die in der Literatur beschriebene Interaktion zwischen Drosophila CSP und Syntaxin konnte für die transgen exprimierte größte CSP Isoform CSP1 in Immunpräzipitationsexperimenten mit Drosophila-Kopfhomogenat bestätigt werden. Die Frage nach einer Interaktion zwischen Syntaxin und den anderen untersuchten mutierten CSP-Isoformen bleibt dagegen offen. Der zweite Teil dieser Arbeit befasst sich mit dem Versuch, mithilfe des UAS/Gal4- und des Flippase/FRT -Systems die CSP-Expression räumlich und zeitlich zu kontrollieren. Dazu wurde aufgrund von Datenbankangaben eine minimale FRT-Sequenz aus Oligonukleotiden mit entsprechenden Linkern konstruiert. Das gesamte Csp-Gen beziehungsweise die Csp cDNA1 einschließlich der regulatorischen Sequenzen wurde zwischen zwei gleichgerichteten FRT-Sequenzen pW8 eingebracht. Die Keimbahntransformation führte zu mehreren transgenen Fliegenlinien. Nach aufwendigen Kreuzungen mit Gal4-, UAS-Flippase- und Csp-Null-Linien entstanden Fliegen im CSP-Nullhintergrund, welche eine durch die verwendete Gal4-Linie definierte Expression von Flippase zeigten und das FRT-Konstrukt trugen. Diese Fliegen sollten in Flippase positiven Bereichen keine CSP-Expression mehr zeigen. Verhaltensanalysen an solchen Tieren bei normaler und erhöhter Temperatur könnten dann Aufschluss über die Funktion der Zellen ohne CSP-Expression geben. Leider konnten die erwarteten Veränderungen in der CSP-Expression nicht beobachtet werden, obwohl alle Konstrukte sich nach einer Überprüfung als intakt erwiesen haben. Die Ursache für die fehlende Rekombination zwischen den FRT-Sequenzen ist möglicherweise in einer zu geringen Länge dieser Zielsequenz der Flippase zu suchen. Im dritten Abschnitt der Arbeit wird der Csp-Genlokus und seine benachbarten Gene vorgestellt, und die möglichen Auswirkungen der Deletionen in den zur Verfügung stehenden Mutanten CspU1, CspU1w und CspK16 diskutiert. Aufgrund der Daten aus dem Drosophila Genomprojekt lag die Spekulation nahe, dass der Phänotyp der Deletionsmutanten auch durch eine veränderte Expression der benachbarten Gene stromab- und stromaufwärts des Csp Gens beeinflusst werden könnte. Die Auswertung eines Northern Blots von PolyA+-RNA adulter Fliegen, sowie einfache Verhaltenstests an vorliegenden und neu generierten CSP-Nullmutanten konnten diesen Verdacht allerdings nicht bestätigen. N2 - Exocytosis during synaptic transmission is regulated by a complex machinery of numerous proteins. CSPs (cysteine string proteins), conserved from C.elegans to mamals, are attached to synaptic vesicle membranes and other secretory granules. They were therefore implicated to play a distinct part in this regulated process. However the exact role of the CSP protein in exocytosis is not yet known. Studies of Drosophila in null mutants for the Csp gene revealed a temperature sensitive paralytic phenotype, severely shortened lifespan and fertility. Exposure of larval nerve-muscle preparations to elevated temperatures (>29°C) lead to a reversible block of neurotransmitter release in electrophysiological measurements. The primary structure of the cysteine string protein is characterized by distinct conserved domains: a N-terminal protein kinase A (PKA) phosphorylation site, a region showing high homology to a domain found in DnaJ proteins (DnaJ-domain), a region called linker domain, a cysteine rich region, which in Drosophila comprises the characteristic string of 11 cysteines flanked by two additional pairs of cysteines, and a less conserved C-terminal region, which is absent in various splice variants. Experiments using vertebrates showed that CSP is part of a trimeric complex of Hsc70/CSP/SGT and may possibly act as co-chaperone during exocytotic processes. The cysteine string is found to be modified with multiple palmitoyl residues and appears to be essential for targeting of the protein to the vesicle membrane. In earlier studies mutagenesis and germ-line transformation were used to initiate an analysis on the role of the cysteine string, the linker domain and C-terminal region for CSP function. The present thesis extends this work by characterizing in transgenic flies four different mutated cysteine string isoforms (CSLP, SCSP, CLP, SSP) and deletions affecting the linker domain (LΔ8) and C-terminal region (CΔ27) using transgenic flies. The subcellular distribution and altered membrane binding properties of the mutated isoforms were analyzed using glycerol gradients and membrane fractionation. Due to the lack of palmitoylation CLP and SSP are exclusively found as soluble proteins in the cytosol whereas CSLP can also be found attached to vesicle membranes in membrane fractions. The flanking and remaining cysteines in the isoforms CSLP and SCSP apparently are able to partially direct the proteins to the membrane. The shortened cysteine string in SCSP is sufficient to induce membrane binding and is as resistant to depalmitoylation with hydroxylamine as wildtype CSP. The biochemical results correspond to the immunohistochemical findings, which show an almost homogenous distribution of the proteins CSLP, CLP and SSP, unlike the wildtype staining which is confined to neuropil regions in the adult brain. The mutant isoforms with deleted or substituted cysteine string do neither rescue the temperature sensitive phenotype nor the short life span observed in CSP-null mutants. In contrast the proteins LΔ8 and CΔ27 exhibit wildtype properties in the biochemical assays and the staining pattern of the adult brain. The deletion LΔ8 seems to interfere with regular CSP function in some way, as these transgenic flies paralyze at 38°C whereas wildtype flies paralyze at 40°C. The previously described interaction of CSP and syntaxin in Drosophila could be confirmed by precipitating syntaxin together with the largest CSP isoform CSP1 from Drosophila head homogenates using an antibody against CSP. A possible disruption of this interaction in the mutant transgenic flies could not be shown and remains to be investigated. The second part of this work describes the attempt to temporally and spatially regulate CSP expression by employing the UAS/Gal4- and flippase/FRT-system. Using database information a minimal FRT-sequence with apprropriate linkers was generated from oligonucleotides. The entire Csp gene or Csp cDNA1 with necessary regulatory sequences was ligated between two FRT sites and inserted into the transformation vector pW8. After extensive crossing of transgenic flies carrying the FRT-construct with Gal4-,UAS-flippase-, and Csp-null-lines flies were obtained which expressed the flippase in defined areas of Gal4 expression and contained the FRT construct, all in Csp-null background. Areas positiv for flippase expression should loose transgenic CSP expression. Behavioural analyis of these flies at normal and elevated temperatures should provide functional information on the cells lacking CSP. Unfortunately no differences in behaviour or staining pattern of adult brain could be detected, although all constructs were proven to be functional. The lack of recombination events might be due to the reduced length of the flippase target sequence used. The third project presents the Csp-locus and its neighbouring genes in Drosophila. The possible influence of deletions in the CSP null mutants CspU1, CspU1w and CspK16 on the expression of neighbouring genes are discussed. Based on sequence data offered by the Drosophila genome project it was speculated that these genes might influence the mutant phenotype. Northern blotting of adult head polyA+-RNA, simple tests of behaviour of already known and newly generated Csp null mutants could not confirm this speculation. KW - Taufliege KW - Cysteinderivate KW - Genexpression KW - Cysteine String Protein KW - Drosophila melanogaster KW - Cysteine String Protein KW - Drosophila melanogaster Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6291 ER - TY - JOUR A1 - Pauls, Dennis A1 - Blechschmidt, Christine A1 - Frantzmann, Felix A1 - el Jundi, Basil A1 - Selcho, Mareike T1 - A comprehensive anatomical map of the peripheral octopaminergic/tyraminergic system of Drosophila melanogaster JF - Scientific Reports N2 - The modulation of an animal’s behavior through external sensory stimuli, previous experience and its internal state is crucial to survive in a constantly changing environment. In most insects, octopamine (OA) and its precursor tyramine (TA) modulate a variety of physiological processes and behaviors by shifting the organism from a relaxed or dormant condition to a responsive, excited and alerted state. Even though OA/TA neurons of the central brain are described on single cell level in Drosophila melanogaster, the periphery was largely omitted from anatomical studies. Given that OA/TA is involved in behaviors like feeding, flying and locomotion, which highly depend on a variety of peripheral organs, it is necessary to study the peripheral connections of these neurons to get a complete picture of the OA/TA circuitry. We here describe the anatomy of this aminergic system in relation to peripheral tissues of the entire fly. OA/TA neurons arborize onto skeletal muscles all over the body and innervate reproductive organs, the heart, the corpora allata, and sensory organs in the antennae, legs, wings and halteres underlining their relevance in modulating complex behaviors. KW - neural circuits KW - peripheral nervous system KW - Drosophila melanogaster Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177412 VL - 8 IS - 15314 ER - TY - THES A1 - Niewalda, Thomas T1 - Neurogenetic analyses of pain-relief learning in the fruit fly T1 - Neurogenetische Analyse von pain-relief Lernen in der Fruchtfliege N2 - All animals learn in order to cope with challenges imposed on them by their environment. This is true also for both larval and adult fruit flies as exemplified in pavlovian conditioning. The focus of this Thesis is on various aspects of the fruit flies learning ability. My main project deals with two types of learning which we call punishment-learning and pain-relief learning. Punishment learning happens when fruit flies are exposed to an odour which is followed by electric shock. After such training, flies have learned that that odour signals pain and consequently will avoid it in the future. If the sequence of the two stimuli is reversed such that odour follows shock, flies learn the odour as a signal for relief and will later on approach it. I first report a series of experiments investigating qualitative and parametric features of relief-learning; I find that (i) relief learning does result from true associative conditioning, (ii) it requires a relatively high number of training trials, (iii) context-shock training is ineffective for subsequent shock-odour learning. A further question is whether punishment-learning and pain-relief learning share genetic determinants. In terms of genetics, I test a synapsin mutant strain, which lacks all Synapsin protein, in punishment and relief-learning. Punishment learning is significantly reduced, and relief-learning is abolished. Pan-neuronal RNAi-mediated knock-down of Synapsin results in mutant-like phenotypes, confirming the attribution of the phenotype to lack of Synapsin. Also, a rescue of Synapsin in the mushroom body of syn97 mutants restores both punishment- and relief-learning fully, suggesting the sufficiency of Synapsin in the mushroom body for both these kinds of learning. I also elucidate the relationship between perception and physiology in adult fruit flies. I use odour-shock conditioning experiments to identify degrees of similarity between odours; I find that those similarity measures are consistent across generalization and discrimination tasks of diverse difficulty. Then, as collaborator of T. Völler and A. Fiala, I investigate how such behavioural similarity/dissimilarity is reflected at the physiological level. I combine the behaviour data with calcium imaging data obtained by measuring the activity patterns of those odours in either the sensory neurons or the projection neurons at the antennal lobe. Our interpretation of the results is that the odours perceptual similarity is organized by antennal lobe interneurons. In another project I investigate the effect of gustatory stimuli on reflexive behaviour as well as their role as reinforcer in larval learning. Drosophila larvae greatly alter their behaviour in presence of sodium chloride. Increasing salt concentration modulates choice behaviour from weakly appetitive to strongly aversive. A similar concentration-behaviour function is also found for feeding: larval feeding is slightly enhanced in presence of low salt concentrations, and strongly decreased in the presence of high salt concentrations. Regarding learning, relatively weak salt concentrations function as appetitive reinforcer, whereas high salt concentrations function as aversive reinforcer. Interestingly, the behaviour-concentration curves are shifted towards higher concentrations from reflexive behaviour (choice behaviour, feeding) as compared to associative learning. This dissociation may reflect a different sensitivity in the respective sensory-motor circuitry. N2 - Tiere müssen lernen, damit sie sich in ihrer Umwelt zurechtfinden und die Herausforderungen meistern können, die ihre Umwelt ihnen bietet. Dies gilt auch für Taufliegen im larvalen und erwachsenen Stadium, wie man mit der Pavlovschen Konditionierung zeigen kann. Der Schwerpunkt dieser Doktorarbeit liegt auf verschiedenen Aspekten der Lernfähigkeit von Taufliegen. In meinem Hauptprojekt erforsche ich die Arten von Lernprozessen, die stattfinden, wenn die Fliegen entweder den Beginn oder das Ende eines Elektroschocks mit einem Duft assoziieren. Wenn Taufliegen einen Duft wahrnehmen, der von einem Elektroschock gefolgt wird, lernen sie, dass dieser Duft Schmerz signalisiert, und werden ihn konsequenterweise in Zukunft vermeiden. Man kann die Abfolge dieser beiden Reize so umkehren, dass der Duft auf den Elektroschock folgt. Durch ein solches Training wird der Duft für die Fliegen zu einem Signal für das Ende des schmerzhaften Elektroschocks und sie werden, wenn sie diesen Duft später wieder einmal wahrnehmen, auf ihn zugehen. Ich berichte im ersten Kapitel über Experimente, die qualitative und parametrische Besonderheiten der letzteren Lernform untersuchen. Ich finde heraus, dass (i) das Lernen über das Ende des Elektroschocks echtes assoziatives Lernen ist, (ii) dass es eine relativ hohe Anzahl von Trainingsdurchgängen erfordert, (iii) dass Kontext-Schock-Training unbedeutend für anschließendes Schock-Duft-Lernen ist. Im zweiten Kapitel gehe ich der Frage nach, ob die genannten beiden Typen von Lernvorgängen gemeinsame genetische Determinanten haben. Was die Genetik anbelangt, teste ich die Lernfähigkeit eines Synapsin-Mutantenstammes, dem das Synapsinprotein fehlt. Lernen über den Beginn des Elektroschocks ist stark reduziert, und Lernen über das Ende des Elektroschocks fehlt gänzlich. Die Reduzierung des Synapsinproteins im Fliegengehirn durch RNAi resultiert in mutantenähnlichen Phänotypen. Dieser Befund bestätigt, dass der Lernphänotyp auf einem Mangel an Synapsin beruht. Die Expression von Synapsin im Pilzkörper der Mutante erlaubt der Fliege, wieder normal zu lernen; dies weist auf die Hinlänglichkeit von Synapsin im Pilzkörper für beide Arten von Lernen hin. In einem weiteren Projekt untersuche ich den Zusammenhang zwischen Wahrnehmung und Physiologie in erwachsenen Taufliegen. Ich benutze Duft-Schock-Konditionierungsexperimente, um basierend auf dem Verhalten der Tiere Ähnlichkeitsränge von Düften zu ermitteln, und finde eine einheitliche Rangfolge der untersuchten Düfte für verschiedene Generalisierungs- und Diskriminierungs-Aufgaben von unterschiedlichem Schwierigkeitsgrad. Schließlich erforsche ich in Kooperation mit T. Völler and A. Fiala, wie der Grad der Verhaltensähnlichkeit /-unähnlichkeit von Düften mit der Physiologie der Fliege in Beziehung steht. Ich kombiniere die Verhaltensdaten mit Daten, die mittels funktioneller Bildgebung unter Verwendung genetisch codierter Kalziumsensoren erhalten wurden. Diese Methode erlaubt, Aktivitätsmuster, die von den untersuchten Düften verursacht werden, entweder in den sensorischen Neuronen oder in den Projektionsneuronen des Antennallobus zu messen. Unsere Interpretation der Ergebnisse ist, dass die Verhaltensähnlichkeit der Düfte auf Ebene der Interneuronen im Antennallobus organisiert wird. Weiterhin erforsche ich die Wirkung von Kochsalz (Natriumchlorid) auf das Reflexverhalten und die Rolle von Natriumchlorid als Belohnung oder Bestrafung im Larvenlernen. Larven der Taufliege verändern ihr Reflexverhalten in Gegenwart von Natriumchlorid in hohem Maße. Larven bevorzugen niedrige Salzkonzentrationen gegenüber einem Substrat ohne Salz; erhöht man die Salzkonzentration jedoch, kehrt sich das Wahlverhalten ins Gegenteil um, bis die Tiere das salzhaltige Substrat stark vermeiden. Ein ähnlicher Zusammenhang zwischen Konzentration und Verhalten wird auch für das Fressverhalten gefunden: Larven fressen von einem Substrat mit niedrigen Salzkonzentrationen geringfügig mehr, von einem Substrat mit hohen Salzkonzentrationen jedoch deutlich weniger als von einem Kontrollsubstrat ganz ohne Salz. Was das Lernen betrifft, wirken relativ schwache Salzkonzentrationen als Belohnung, während hohe Salzkonzentrationen als Bestrafung wirken. Interessanterweise ist die Verhaltens-Konzentrations-Kurve von Reflexverhalten (Wahlverhalten, Fressverhalten) verglichen mit assoziativem Lernen in Richtung höherer Konzentrationen verschoben. Diese Dissoziation könnte eine verschiedenartige Sensitivität der Schaltkreise widerspiegeln. KW - Taufliege KW - Assoziatives Gedächtnis KW - Lernverhalten KW - Synapsine KW - Molekulargenetik KW - Drosophila melanogaster KW - olfaction KW - learning KW - memory KW - synapsin Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65035 ER -