TY - THES A1 - Kay, Janina T1 - The circadian clock of the carpenter ant \(Camponotus\) \(floridanus\) T1 - Die circadiane Uhr der Rossameise \(Camponotus\) \(floridanus\) N2 - Due to the earth´s rotation around itself and the sun, rhythmic daily and seasonal changes in illumination, temperature and many other environmental factors occur. Adaptation to these environmental rhythms presents a considerable advantage to survival. Thus, almost all living beings have developed a mechanism to time their behavior in accordance. This mechanism is the endogenous clock. If it fulfills the criteria of (1) entraining to zeitgebers (2) free-running behavior with a period of ~ 24 hours (3) temperature compensation, it is also referred to as “circadian clock”. Well-timed behavior is crucial for eusocial insects, which divide their tasks among different behavioral castes and need to respond to changes in the environment quickly and in an orchestrated fashion. Circadian rhythms have thus been studied and observed in many eusocial species, from ants to bees. The underlying mechanism of this clock is a molecular feedback loop that generates rhythmic changes in gene expression and protein levels with a phase length of approximately 24 hours. The properties of this feedback loop are well characterized in many insects, from the fruit fly Drosophila melanogaster, to the honeybee Apis mellifera. Though the basic principles and components of this loop are seem similar at first glance, there are important differences between the Drosophila feedback loop and that of hymenopteran insects, whose loop resembles the mammalian clock loop. The protein PERIOD (PER) is thought to be a part of the negative limb of the hymenopteran clock, partnering with CRYPTOCHROME (CRY). The anatomical location of the clock-related neurons and the PDF-network (a putative in- and output mediator of the clock) is also well characterized in Drosophila, the eusocial honeybee as well as the nocturnal cockroach Leucophea maderae. The circadian behavior, anatomy of the clock and its molecular underpinnings were studied in the carpenter ant Camponotus floridanus, a eusocial insect Locomotor activity recordings in social isolation proved that the majority of ants could entrain to different LD cycles, free-ran in constant darkness and had a temperature-compensated clock with a period slightly shorter than 24 hours. Most individuals proved to be nocturnal, but different types of activity like diurnality, crepuscularity, rhythmic activity during both phases of the LD, or arrhythmicity were also observed. The LD cycle had a slight influence on the distribution of these activities among individuals, with more diurnal ants at shorter light phases. The PDF-network of C. floridanus was revealed with the anti-PDH antibody, and partly resembled that of other eusocial or nocturnal insects. A comparison of minor and major worker brains, only revealed slight differences in the number of somata and fibers crossing the posterior midline. All in all, most PDF-structures that are conserved in other insects where found, with numerous fibers in the optic lobes, a putative accessory medulla, somata located near the proximal medulla and many fibers in the protocerebrum. A putative connection between the mushroom bodies, the optic lobes and the antennal lobes was found, indicating an influence of the clock on olfactory learning. Lastly, the location and intensity of PER-positive cell bodies at different times of a 24 hour day was established with an antibody raised against Apis mellifera PER. Four distinct clusters, which resemble those found in A. mellifera, were detected. The clusters could be grouped in dorsal and lateral neurons, and the PER-levels cycled in all examined clusters with peaks around lights on and lowest levels after lights off. In summary, first data on circadian behavior and the anatomy and workings of the clock of C. floridanus was obtained. Firstly, it´s behavior fulfills all criteria for the presence of a circadian clock. Secondly, the PDF-network is very similar to those of other insects. Lastly, the location of the PER cell bodies seems conserved among hymenoptera. Cycling of PER levels within 24 hours confirms the suspicion of its role in the circadian feedback loop. N2 - Durch die Rotation der Erde um die Sonne, entstehen rhythmische, tägliche und saisonale Änderungen in der Beleuchtung, Temperatur und vielen anderen Umweltfaktoren. Die Anpassung an diese Umweltrhythmen stellt einen großen Überlebensvorteil dar. Deshalb haben fast alle bekannten Lebewesen einen Mechanismus zur Steuerung ihres Verhaltens in Relation zu diesen Änderungen entwickelt. Dieser Mechanismus ist die innere Uhr, die auch als zirkadiane Uhr bezeichnet wird wenn sie die folgenden Kriterien erfüllt: (1) Entrainment auf Zeigeber (2) Freilaufendes Verhalten mit einer Periodenlänge von ungefähr 24 Stunden (3) Temperatur-Kompensation. Den korrekten Zeitpunkt für ein bestimmtes Verhalten einzuhalten ist äußerst wichtig für soziale Insekten. Sie verteilen ihre Aufgaben unter verschiedenen Verhaltens-Kasten und müssen in der Lage sein schnell und organisiert auf Umweltänderungen zu reagieren. Deshalb stellen sie interessante Objekte für das Studium circadianen Verhaltens dar, welches schon in vielen eusozialen Spezies wie Ameisen und Bienen beobachtet wurde. Der der inneren Uhr zugrunde liegende Mechanismus ist eine molekulare Rückkopplungsschleife, die rhythmische Veränderungen in der Expression von Genen und dem Akkumulationsniveau von Proteinen in einem 24 Stunden Zyklus hervorruft. Die Eigenschaften dieser Rückkopplungsschleife sind in vielen Organismen, von der Taufliege Drosophila melanogaster, bis zur Hongbiene Apis mellifera, bereits gut charakterisiert. Obwohl die Gemeinsamkeiten der zugrunde liegenden Prinzipien und Bestandteile stark auffallen, gibt es wichtige Unterschiede zwischen der Rückkopplungsschleife von Drosophila und der eher mammal organisierten Rückkopplungsschleifen hymenopterer Insekten. Das PERIOD (PER) Protein ist vermutlich ein Bestandteil des hemmenden Teils der Schleife und verbindet sich mit CRYPTOCHROME (CRY). Die anatomischen Eigenschaften der Uhrneurone und des PDF-Netzwerks (vermutlich der Ein- und Ausgang für Informationen im Uhrnetzwerk) sind ebenfalls in der Taufliege, eusozialen Honigbiene, sowie in der nachtaktiven Schabe Leucophea maderae sehr gut beschrieben. Die Rossameise Camponotus floridanus wurde hier als Studienobjekt verwendet, um zirkadianes Verhalten, die Anatomie der Uhr sowie die ihr zu Grunde liegenden molekularen Strukturen in einem weiteren eusozialen Organismus zu analysieren. Die Aufzeichnung von Lauf-Verhalten in sozialer Isolation bewies, dass der Großteil der Ameisen in der Lage ist auf verschiedene LD-Zyklen zu entrainen, freilaufendes Verhalten im Dunkeln aufweist und eine temperaturkompensierte Uhr mit einer Periodenlänge von etwa 24 Stunden besitzt. Die meisten Individuen waren nachtaktiv, aber es wurden auch andere Verhaltensmuster wie Tagaktivität, Dämmerungsaktivität, Rhythmische Aktivität während beiden LD Phasen sowie Arrhythmizität beobachtet. Der LD-Zyklus hatte einen leichten Einfluss auf die Verteilungsmuster dieser Aktivitätstypen. Mehr tagaktive Tiere wurden bei kurzen Lichtphasen beobachtet. Das PDF-Netzwerk in C. floridanus konnte mit Hilfe des anti-PDH Antikörpers sichtbar gemacht werden und ähnelte in Teilen dem anderer eusozialer oder nachtaktiver Insekten. Ein Vergleich zwischen den Gehirnen kleiner und großer Arbeiter zeigte nur geringe Unterschiede in der Anzahl von Zellkörpern und Fasern die die posteriore Mitte des Gehirns überschreiten. Im Gesamten konnte die Mehrzahl der zwischen den anderen Insektengehirnen konservierten PDF-Strukturen, wie viele Fasern in den optischen Loben, eine akzessorische Medulla, Zellkörper neben der proximalen Medulla und viele Verzweigungen im Protozerebrum, gefunden werden. Eine mögliche Verbindung zwischen den Pilzkörpern, optischen Loben und den Antennalloben wurde identifiziert und weist auf einen Einfluss der Uhr auf olfaktorisches Lernen hin. Zu guter letzte wurde mit Hilfe eines gegen Bienen-PER gerichteten Antikörpers die Lage und Intensität der PER-Zellkörper während mehrerer Zeitpunkte im Verlauf von 24 Stunden bestimmt. Vier abgegrenzte Gruppen von Zellkörpern, die den Gruppen in A. mellifera ähneln, konnten identifiziert werden. Diese Gruppen teilen sich in dorsale und laterale Neuronen und der Proteingehalt an PER oszilliert in allen untersuchten Gruppen, mit dem Höhepunkt bei Licht-an und dem Tiefpunkt kurz nach Licht-aus. Zusammenfassend ist zu sagen, dass erste Erkenntnisse über zirkadianes Verhalten, die Anatomie und die Grundlagen der inneren Uhr von C. floridanus gewonnen werden konnten. Erstens, erfüllt das Verhalten alle Kriterien für die Präsenz einer inneren Uhr. Zweitens, ist das PDF-Netzwerk ähnlich dem anderer Insekten. Letztens, scheint die Lage der PER-positiven Neurone innerhalb der Hymenopteren konserviert. Die Oszillation von PER bestätigt den Verdacht seiner Beteiligung an der Rückkopplungsschleife der inneren Uhr. KW - Chronobiologie KW - Tagesrhythmus KW - Camponotus floridanus KW - Protein KW - Innere Uhr KW - Endogenous clock KW - Circadiane Uhr KW - Circadian Clock KW - Ant KW - Ameise KW - Insect KW - Insekt KW - Protein KW - Circadianer Rhythmus KW - Tagesrhythmik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158061 ER - TY - JOUR A1 - Fiala, Brigitte T1 - Extrafloral nectaries versus ant-Homoptera mutualisms : a comment on Becerra and Venable N2 - No abstract available KW - Nektarium KW - Ameise Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32948 ER - TY - THES A1 - Berghoff, Stefanie M. T1 - Sociobiology of the hypogaeic army ant Dorylus (Dichthadia) laevigatus Fr. Smith T1 - Soziobiologie der unterirdischen Treiberameise Dorylus (Dichthadia) laevigatus Fr. Smith N2 - Originally renowned for their spectacular epigaeic raids, army ants have captured scientific attention for almost two centuries. They now belong to one of the best studied group of ants. However, most of our knowledge about army ants was derived from the study of the minority of specialized, epigaeicly active species. These species evolved probably rather recently from hypogaeic ancestors. The majority of army ant species still leads a hypogaeic life and is almost completely unknown in its entire sociobiology. It thus remained speculative, whether the assumed 'general' characteristics of army ants represent an adaptation to epigaeic activity or apply also to the majority of hypogaeic species. Based on the recent observation that the hypogaeic Asian army ant Dorylus (Dichthadia) laevigatus recruits predictably to palm oil baits, I developed and tested an oil-baiting method for the study of hypogaeic (army)ants. Prior to my study, nothing was known about the sociobiology of the assumed rare D. laevigatus. Throughout my work, I showed D. laevigatus to be very common and abundant in a wide range of habitats in West-Malaysia and on Borneo. Investigating its foraging behavior, I revealed D. laevigatus to differ from epigaeicly active species in several ways. Never demonstrated for any of the epigaeic species, D. laevigatus established stable trunk trail systems. Such a trail system contradicted the perception of army ant foraging, which was believed to be characterized by raids with constantly alternating trail directions. The trunk trail system further enabled a near omnipresence of D. laevigatus within its foraging area, which was also believed to be atypical for an army ant. Raids differed in structure and composition of participating workers from those of epigaeic species. Also, bulky food sources could be exploited over long periods of time. The foraging system of D. laevigatus resembled in several ways that of e.g. leaf-cutter and harvester ants. Likewise contrary to the assumptions, D. laevigatus had a wide food spectrum and showed only little effect on local arthropod communities, even falling itself prey to other ants. Strong aggressive behavior was observed only towards ant species with similar lifestyles, enabling me to provide the first detailed documentation of interspecific fights between two sympatric Dorylus species. Similar to foraging habits or ecological impact, nothing was known about colony size and composition, nesting habits, or worker polymorphism for D. laevigatus or any other hypogaeic Dorylus species prior to my work. By observing and eventually excavating a colony, I showed D. laevigatus to have a much smaller colony size and to lack the large sized workers of epigaeic Dorylus species. Similar to epigaeic Dorylinae, I showed D. laevigatus to have a non-phasic brood production, to emigrate rarely, and to alter its nest form along with habitat conditions. Detailed morphological and geographical descriptions give an impression of the Asian Dorylus species and are expected to aid other researchers in the difficult species identification. The genetic analysis of a male collected at a light trap demonstrated its relation to D. laevigatus. Confirming the male and queen associations, D. laevigatus is now one of five Dorylus species (out of a total of 61), for which all castes are known. In cooperation with D. Kistner, I provide a morphological and taxonomical description of nine Coleopteran beetles associated with D. laevigatus. Behavioral observations indicated the degree of their integration into the colony. The taxonomic position of the beetles further indicated that D. laevigatus emigrated from Africa to Asia, and was accompanied by the majority of associated beetles. The diversity of D. laevigatus guests, which included a number of unidentified mites, was rather low compared to that of epigaeic species. Overall, I demonstrated the developed baiting containers to effectively enable the study of hypogaeic ants. I showed several other hypogaeic ant species to be undersampled by other methods. Furthermore, the method enabled me to documented a second hypogaeic Dorylus species on Borneo. A detailed description of this species' morphology, ecology, and interactions with D. laevigatus is provided. My study indicated D. laevigatus to be an ecologically important species, able to influence soil structure and organisms of tropical regions in many ways. Relating the observed traits of D. laevigatus to epigaeicly active species, I conclude that our assumption of 'general' army ant behavior is erroneous in several aspects and needs to be changed. The oil-baiting method finally provides a tool enabling the location and study of hypogaeic (army)ant species. This opens a broad field for future studies on this cryptic but nonetheless important group of ants. N2 - Bekannt durch ihre spektakulären Massenraubzüge werden Treiberameisen seit fast 200 Jahren wissenschaftlich untersucht und sind nun eine der am besten untersuchten Ameisengruppen. Jedoch basiert unser Wissen über diese Tiere fast ausschließlich auf der Erforschung der kleinen Gruppe der oberirdisch fouragierenden Arten. Diese haben sich jedoch wahrscheinlich erst vor evolutionär relativ kurzer Zeit aus unterirdischen Arten entwickelt. Die weitaus größere Zahl der Arten lebt auch heute noch unterirdisch und ist in ihrer Soziobiologie praktisch unbekannt. Es blieb daher spekulativ, ob die als 'typisch' geltenden Treiberameisencharakteristika nur eine besondere Anpassung an ein oberirdisches Fouragieren darstellen, oder auch auf die unterirdische Mehrheit der Arten zutreffen. Basierend auf die Entdeckung dass die unterirdische asiatische Treiberameisenart Dorylus (Dichthadia) laevigatus voraussagbar an Palmöl-Köder rekrutiert habe ich verschiedene Köderbehälter entworfen und die Eignung der Ködermethode für die Erforschung unterirdischer (Treiber)ameisen untersucht. Vor meiner Arbeit war über die Soziobiologie der als selten geltenden D. laevigatus nichts bekannt. Meine Arbeit zeigte dagegen, dass D. laevigatus sehr häufig und verbreitet ist. Durch die genauere Untersuchung des Fouragierverhaltens konnte ich zeigen, dass sich D. laevigatus von den bekannten, oberirdisch aktiven Arten in mehreren grundlegenden Merkmalen unterscheidet. Das gefundene fest etablierte und lang genutzte Wegesystem von D. laevigatus wurde bisher nie für epigäische Arten gezeigt und widerspricht sogar dem bisherigen Bild des Lebenstyps Treiberameise, für den ständig wechselnde Wegrouten als typisch galten. Dieses Wegesystem verlieh D. laevigatus eine nahe Omnipräsenz in ihrem Fouragiergebiet. Weiterhin wichen Raubzüge in ihrer Struktur und Zusammensetzung der beteiligten Arbeiterinnen von denen oberirdischer Arten ab. Auch konnten große Futtermengen über längere Zeiträume hinweg genutzt werden. Das beobachtete Fouragierverhalten ähnelt daher zum Teil eher dem von Blattscheider- und Ernteameisen als dem oberirdisch jagender Treiberameisen. Ebenfalls entgegen den bisherigen Vermutungen hat D. laevigatus ein breites Nahrungsspektrum und zeigte nur geringen Einfluss auf lokale Bodengemeinschaften. Zum Teil wurde sie selbst zur Beute. Stark aggressives Verhalten konnte ich vor allem gegenüber Arten mit ähnlicher Lebensweise beobachten. Dies erlaubte mir die erste detaillierte Dokumentation interspezifischer Kämpfe zwischen zwei sympatrischen Dorylus Arten. Ähnlich den Fouragiergewohnheiten und des ökologischen Einflusses war bislang auch nichts über Koloniegröße, Nistgewohnheiten und Arbeiterinnen-Polymorphismus von D. laevigatus oder anderen unterirdischen Dorylus Arten bekannt. Nach der Beobachtung und Einsammlung eines Volkes konnte ich zeigen, dass eine D. laevigatus Kolonie bedeutend kleiner ist und ihr die großen Arbeiterinnen fehlen im Vergleich zu oberirdischen Dorylus Arten. Ähnlich den oberirdischen Dorylinae zeigte D. laevigatus eine nicht-phasische Brutproduktion, eher seltene Kolonieumzüge und eine mit dem Habitat variierende Nestform. Detaillierte morphologische und geographische Beschreibungen geben einen Überblick über die asiatischen Dorylus Arten und sollen nachfolgenden Wissenschaftlern bei der schwierigen Artbestimmung unterstützen. Die genetische Analyse eines am Licht gefangenen Männchens weist dies eindeutig D. laevigatus zu. Durch meine Arbeit zählt D. laevigatus nun zu einer von fünf Dorylus Arten (von insgesamt 61), von denen alle Kasten bekannt sind. In Kooperation mit D. Kistner liefere ich eine morphologische und taxonomische Beschreibung von neun mit D. laevigatus assoziierten Käferarten. Verhaltensbeobachtungen geben Aufschluss über den Grad der Assoziation. Die taxonomische Position der Käfer lässt ferner darauf schließen, dass die Ameisen aus Afrika nach Asien emigrierten und der Großteil der assoziierten Käfer dieser Wanderung folgte. Die entwickelten Köderbehälter erwiesen sich als effektiv und gut geeignet für die Untersuchung unterirdischer Ameisen. So konnte ich zeigen, dass unterirdische Ameisenarten in Studien mit anderen Sammelmethoden oft unterrepräsentiert sind. Auch fand ich mit Hilfe der Ködermethode eine zweite, auf Borneo bislang unbekannte Dorylus Art. Morphologie, Ökologie dieser Art sowie Interaktionen mit D. laevigatus werden beschrieben. Meine Studie weist D. laevigatus als eine ökologisch wichtige Art aus, die in vielfacher Weise Bodenstruktur und Bodenorganismen tropischer Regionen beeinflussen kann. Im Vergleich mit den bekannten oberirdisch lebenden Arten komme ich zu dem Schluss, dass unser bisheriges Bild von 'typischen' Treiberameiseneigenschaften in verschiedener Hinsicht nicht zutrifft und geändert werden muss. KW - Borneo KW - Dorylus KW - Nahrungserwerb KW - Boden KW - Ameise KW - Verhalten KW - Bodenökologie KW - Tropen KW - Borneo KW - behavior KW - soil KW - ecology KW - rainforest KW - Borneo Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5005 ER -