TY - THES A1 - Schwenkert, Isabell T1 - Phenotypic characterization of hangover at the neuromuscular junction T1 - Phänotypische Charakterisierung von hangover an der neuromuskulären Synapse N2 - Ethanoltoleranz beruht vermutlich auf Veränderung in synaptischer Plastizität; da die Mechanismen, die zu dieser Anpassung der Synapsen führen, in hang-Mutanten offensichtlich defekt sind, war es Ziel dieser Arbeit zu erklären, wie HANG zu synaptischer Plastizität beiträgt. In diesem Zusammenhang war es besonders wichtig herauszufinden, in welchem neuronalen Prozeß HANG eine Rolle spielt. Antikörperfarbungen gegen HANG zeigten, da das Protein in allen neuronalen Zellkernen larvaler und adulter Gehirne vorhanden ist. Gehirne der hangAE10 Mutante zeigen keine Färbung, was bestätigt, da diese Tiere Nullmutanten für HANG sind. Eine genauere Analyse der Verteilung von HANG im Zellkern ergab, daß HANG in einem punktartigen Muster an bestimmten Stellen im Kern angereichert ist; diese HANG-Aggregate sind an der Innenseite der Kernmembran lokalisiert und colokalisieren nicht mit dem Chromatin. Auf der Basis dieser Ergebnissen wurde postuliert, daß HANG vermutlich an der Stabilisierung, Prozessierung oder dem Export von mRNAs beteiligt ist. Da synaptische Plastizität gut an den einzelnen Neuronen der neuromuskulären Synapse von Drosophila-Larven studiert werden kann, wurde die Morphologie der Motorneurone dritter Larven am Muskelpaar 6/7 des Segments A4 untersucht. Diese Untersuchungen zeigten, da Boutonanzahl und Axonlänge in hangAE10-Larven um 40 % erhöht sind. Außerdem zeigen einige Boutons der hang-Mutanten eine abnormale, sanduhrförmige Form, was darauf hinweist, daß sie nach Initiation der Bouton-Teilung möglicherweise in einem halb-separierten Zustand geblieben sind. Die Zunahme an Boutons in den Mutanten ist im wesentlichen auf eine Zunahme der Anzahl der Typ Ib-Boutons zurückzuführen. Die Analyse der Verteilung verschiedener synaptischer Marker in hangover-Mutanten ergab keine Hinweise auf Abnormalitäten im Zytoskelett oder in der Ausbildung der prä-und postsynaptischen Strukturen. Des weiteren ist die Anzahl der aktiven Zonen relativ zur Boutonoberfläche nicht verändert; da hang-Mutanten aber mehr synaptische Boutons pro synaptischem Terminal besitzen, kann man insgesamt von einer Zunahme der Anzahl der aktiven Zonen ausgehen. Die präsynaptische Expression von HANG in den Mutanten rettet die erhöhte Boutonanzahl und die verlängerten Axone, was ebenfalls beweist, daß die beobachteten synaptischen Defekte auf das Fehlen von HANG und nicht auf Sekundärmutationen zurückzuführen sind. Eine postsynaptische Expression der hangover cDNA in den Mutanten dagegen rettet den Phänotyp nicht. Die Anzahl der synaptischen Boutons wird unter anderem durch cAMP-Levels bestimmt, welche somit synaptische Plastizität regeln. Da hang-Mutanten eine erhöhte Boutonanzahl aufweisen, führte dies zu der Spekulation, daß der Phänotyp dieser Mutanten möglicherweise auf veränderte cAMPlevels zurückzuführen ist. Um dies zu überprüfen, wurde die Morphologie der neuromuskulären Synapsen von hangAE10-Larven mit denen von dnc1 verglichen, welche Defekte in der cAMP-Kaskade aufweisen. Einige Aspekte des Phänotyps (z. B. die Zunahme der Boutonanzahl und das Verhaltnis von aktiven Zonen pro Boutonfläche) sind sehr ¨ahnlich; jedoch unterscheiden sich die beiden Mutanten in anderen morphologischen Aspekten. Die Expression eines UAS-dnc-Transgens in hangover-Mutanten modifizierte den hang-Phänotyp ebenfalls nicht. Auf der Basis der Ergebnisse dieser Arbeit wurde ein Modell für die Funktion von HANG erstellt, nach dem dieses Protein vermutlich am Isoform-spezifischen Spleißen bestimmter Transkripte beteiligt ist, deren Produkte für die synaptische Plastizität an der neuromuskulären Synapse benötigt werden. N2 - The development of ethanol tolerance is due to changes in synaptic plasticity. Since the mechanisms mediating synaptic plasticity are probably defective in the mutant hangAE10, it was a goal of the present study to find out how HANG contributes to synaptic plasticity. In particular, it was important to clarify in which neuronal process HANG plays a role. Antibody stainings against HANG revealed that the protein is localized in all neuronal nuclei of larval and adult brains; the staining is absent in hangAE10, thus confirming that this P-element insertion stock is a protein null for HANG. Detailed analysis of the subnuclear distribution of HANG showed that HANG immunoreactivity is enriched at distinct spots in the nucleus in a speckled pattern; these speckles are found at the inside of the nuclear membrane and do not colocalize with chromatin nor with the nucleolus; thus, HANG is probably involved in the stabilization, processing or export of RNAs. As synaptic plasticity can be studied in single neurons at the larval neuromuscular junction, the morphology of the synaptic terminals of hangAE10 mutants was analyzed at muscle 6/7, segment A4. These studies revealed that hangAE10 mutants display a 40 % increase in bouton number and axonal branch length; in addition, some boutons have an abnormal hourglass-like shape, suggesting that they are arrested in a semi-separated state following the initiation of bouton division. The increase in bouton number of hang mutants is mainly due to an increase in numbers of type Ib boutons. The analysis of the distribution of several synaptic markers in hang mutants did not show abnormalities. The presynaptic expression of HANG in hang mutants rescues the increase in bouton number and axonal branch length, thus proving that the phenotypes seen in the P-element insertion hangAE10 are attributable to the lack of HANG rather than to effects of the P-element marker rosy or to a secondary hit on the same chromsome during mutagensis. This finding is further supported by the fact that postsynaptic expression of HANG does not rescue the abnormal NMJ morphology of hangAE10. Alterations in cAMP levels regulate the number of boutons; since hang mutants display an increase in bouton number, the questions was whether this morphological abnormality was due to defects in cAMP signalling. To test this hypothesis, hangAE10 NMJs were compared to those of the hypomorphic allele dnc1 that has a defective cAMP cascade. Some aspects of the NMJ phenotype (e.g. the increase in bouton number and the unaltered ratio of active zones per bouton area) are similar in hangAE10 and dnc1, other differ. Expression of a UAS-dnc transgene in hangAE10 mutants does not modify the phenotype. In summary, the results of this study indicate that nuclear protein HANG might be involved in isoform-specific splicing of genes required for synaptic plasticity at the NMJ. KW - Taufliege KW - Kater KW - Motorische Endplatte KW - Phänotyp KW - hangover KW - Drosophila KW - neuromuskuläre Synapse KW - hangover KW - Drosophila KW - neuromuscular junction Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14977 ER - TY - THES A1 - Wagh, Dhananjay Anil T1 - "Bruchpilot" -molecular and functional characterization of a novel active zone protein at the Drosophila synapse T1 - "Bruchpilot" - Molekulare und funktionelle Charakterisierung eines neuen Proteins der aktiven Zone der Drosophila-Synapse N2 - Chemical neurotransmission is a complex process of central importance for nervous system function. It is thought to be mediated by the orchestration of hundreds of proteins for its successful execution. Several synaptic proteins have been shown to be relevant for neurotransmission and many of them are highly conserved during evolution- suggesting a universal mechanism for neurotransmission. This process has checkpoints at various places like, neurotransmitter uptake into the vesicles, relocation of the vesicles to the vicinity of calcium channels in order to facilitate Ca2+ induced release thereby modulating the fusion probability, formation of a fusion pore to release the neurotransmitter and finally reuptake of the vesicles by endocytosis. Each of these checkpoints has now become a special area of study and maintains its own importance for the understanding of the overall process. Ca2+ induced release occurs at specialized membrane structures at the synapse known as the active zones. These are highly ordered electron dense grids and are composed of several proteins which assist the synaptic vesicles in relocating in the vicinity of Ca2+ channels thereby increasing their fusion probability and then bringing about the vesicular fusion itself. All the protein modules needed for these processes are thought to be held in tight arrays at the active zones, and the functions of a few have been characterized so far at the vertebrate active zones. Our group is primarily interested in characterizing the molecular architecture of the Drosophila synapse. Due to its powerful genetics and well-established behavioural assays Drosophila is an excellent system to investigate neuronal functioning. Monoclonal antibodies (MABs) from a hybridoma library against Drosophila brain are routinely used to detect novel proteins in the brain in a reverse genetic approach. Upon identification of the protein its encoding genetic locus is characterized and a detailed investigation of its function is initiated. This approach has been particularly useful to detect synaptic proteins, which may go undetected in a forward genetic approach due to lack of an observable phenotype. Proteins like CSP, Synapsin and Sap47 have been identified and characterized using this approach so far. MAB nc82 has been one of the shortlisted antibodies from the same library and is widely used as a general neuropil marker due to the relative transparency of immunohistochemical whole mount staining obtained with this antibody. A careful observation of double stainings at the larval neuromuscular junctions with MAB nc82 and other pre and post-synaptic markers strongly suggested an active zone localization of the nc82 antigen. Synaptic architecture is well characterized in Drosophila at the ultrastructural level. However, molecular details for many synaptic components and especially for the active zone are almost entirely unknown. A possible localization at the active zone for the nc82 antigen served as the motivation to initiate its biochemical characterization and the identification of the encoding gene. In the present thesis it is shown by 2-D gel analysis and mass spectrometry that the nc82 antigen is a novel active zone protein encoded by a complex genetic locus on chromosome 2R. By RT-PCR exons from three open reading frames previously annotated as separate genes are demonstrated to give rise to a transcript of at least 5.5 kb. Northern blots produce a prominent signal of 11 kb and a weak signal of 2 kb. The protein encoded by the 5.5 kb transcript is highly conserved amongst insects and has at its N-terminus significant homology to the previously described vertebrate active zone protein ELKS/ERC/CAST. Bioinformatic analysis predicts coiled-coil domains spread all over the sequence and strongly suggest a function involved in organizing or maintaining the structure of the active zone. The large C-terminal region is highly conserved amongst the insects but has no clear homologues in veretebrates. For a functional analysis of this protein transgenic flies expressing RNAi constructs under the control of the Gal4 regulated enhancer UAS were kindly provided by the collaborating group of S.Sigrist (Gِttingen). A strong pan-neuronal knockdown of the nc82 antigen by transgenic RNAi expression leads to embryonic lethality. A relatively weaker RNAi expression results in behavioural deficits in adult flies including unstable flight and impaired walking behavior. Due to this peculiar phenotype as observed in the first knockdown studies the gene was named “bruchpilot” (brp) encoding the protein “Bruchpilot (BRP)” (German for crash pilot). A pan-neuronal as well as retina specific downregulation of this protein results in loss of ON and OFF transients in ERG recordings indicating dysfunctional synapses. Retina specific downregulation also shows severely impaired optomotor behaviour. Finally, at an ultrastructural level BRP downregulation seems to impair the formation of the characteristic T-shaped synaptic ribbons at the active zones without significantly altering the overall synaptic architecture (in collaboration with E.Asan). Vertebrate active zone protein Bassoon is known to be involved in attaching the synaptic ribbons to the active zones as an adapter between active zone proteins RIBEYE and ERC/CAST. A mutation in Bassoon results in a floating synaptic ribbon phenotype. No protein homologous to Bassoon has been observed in Drosophila. BRP downregulation also results in absence of attached synaptic ribbons at the active zones. This invites the speculation of an adapter like function for BRP in Drosophila. However, while Bassoon mutant mice are viable, BRP deficit in addition to the structural phenotype also results in severe behavioural and physiological anomalies and even stronger downregulation causes embryonic lethality. This therefore suggests an additional and even more important role for BRP in development and normal functioning of synapses in Drosophila and also in other insects. However, how BRP regulates synaptic transmission and which other proteins are involved in this BRP dependant pathway remains to be investigated. Such studies certainly will attract prominent attention in the future. N2 - Die chemische Signalübertragung an Synapsen ist ein komplexer Prozess mit zentraler Bedeutung für die Funktion von Nervensystemen. Man nimmt an, dass er auf einem Zusammenspiel hunderter verschiedener Proteine beruht. Diverse Synopsenproteine haben sich für die Neurotransmission als relevant erwiesen und viele davon sind in der Evolution hoch konserviert, was einen universalen Mechanismus der Neurotransmission wahrscheinlich macht. Dieser Prozess ist in zahlreiche aufeinander folgende Schritte unterteilt, wie die Neurotransmitteraufnahme in Vesikel, den Transport von Vesikeln in die Nنhe von Calciumkanنlen, die Ausbildung einer Fusionspore zur Transmitterausschüttung und schlieكlich die Wiederaufnahme von Vesikeln durch Endozytose. Jeder dieser Teilschritte wird momentan gezielt erforscht und spielt für sich genommen eine zentrale Rolle für das Verstنndnis des gesamten Prozesses. Die Calcium-induzierte Transmitterausschüttung findet an spezialisierten Membranstrukturen der Synapsen statt, den aktiven Zonen. Diese sind hoch organisierte, elektronendichte Gitterstrukturen und bestehen aus verschiedenen Proteinen, die den synaptischen Vesikeln bei der Verlagerung in die Nنhe von Calciumkanنlen behilflich sind. Alle Proteinmodule, die für diese Prozesse nِtig sind, scheinen eng aneinandergereiht an den aktiven Zonen vorzuliegen. Nur von wenigen konnte bisher bei Vertebraten die Funktion an der aktiven Zone charakterisiert werden. Ein Fokus der Arbeitsgruppe, an der diese Doktorarbeit durchgeführt wurde, besteht in der Charakterisierung des molekularen Aufbaus der Synapse von Drosophila. Die Taufliege ist aufgrund eines reichen Angebots hِchsteffektiver genetischer Methoden und vielfنltiger Verhaltensparadigmen ein exzellentes Modellsystem, um die neuronale Signalübertragung zu untersuchen. Monoklonale Antikِrper (MAKs) aus einer Hybridomabank gegen das Drosophila Gehirn werden standardmنكig verwendet, um neue Gehirnproteine mittels der „reverse genetics“- Methode zu identifizieren. Dazu wird der entsprechende genetische Lokus charakterisiert und eine detaillierte Untersuchung der Proteinfunktion initiiert. Diese Vorgehensweise war besonders hilfreich bei der Identifizierung von Synapsenproteinen, die bei der „forward genetics“-Methode aufgrund des Fehlens eines beobachtbaren Phنnotyps übersehen würden. Proteine wie CSP, Synapsin und Sap47 wurden so gefunden und charakterisiert. I MAK nc82 stammt aus dieser Hybridomabank und wird in vielen Labors als allgemeiner Neuropilmarker aufgrund seiner hervorragenden Fنrbungseigenschaften in Gehirnprنparaten verwendet. Doppelfنrbungen der larvalen neuromuskulنren Synapse mit dem Antikِrper nc82 in Kombination mit anderen prن- und postsynaptischen Markern deuteten stark auf eine Lokalisierung des Antigens an der aktiven Zone hin. Die Synapsenarchitektur von Drosophila ist auf der ultrastrukturellen Ebene gut verstanden. Jedoch sind die molekularen Details vieler Synapsenkomponenten, besonders die der aktiven Zone, nicht bekannt. Die vermutete Lokalisierung des nc82 Antigens an der aktiven Zone war daher der Ansatzpunkt, eine biochemische Charakterisierung zu initiieren und das entsprechende Gen zu identifizieren. In der vorliegenden Arbeit wird durch 2-D Gelelektrophorese und Massenspektrometrie gezeigt, das das nc82 Antigen ein neues Protein der aktiven Zone ist, welches von einem komplexen Genlokus auf Chromosom 2R kodiert wird. Durch RT-PCR wurde gezeigt, dass die Exons von drei offenen Leserastern, die bisher als getrennte Gene annotiert wurden, ein Transkript von mindestens 5,5 kb Lنnge kodieren. Northern Blots ergaben ein deutliches Signal bei 11 kb und ein schwنcheres bei 2 kb. Das von dem 5,5 kb Transkript resultierende Protein ist hoch konserviert in der Gruppe der Insekten und weist an seiner N-terminalen Domنne eine signifikante Homologie zu den bisher beschriebenen Vertebratenproteinen der aktiven Zone ELKS/ERC/CAST auf. Bioinformatische Analysen sagen „coiled-coil“ Domنnen vorher, die über die gesamte Sequenz verteilt sind. Dies deutet stark auf eine Funktion bei der Organisation oder der Aufrechterhaltung der prنsynaptischen Struktur hin. Die groكe C-terminale Region ist zwar bei Insekten hoch konserviert, zeigt aber keine eindeutige Homologie zu Proteinen von Vertebraten. Für die Funktionsanalyse dieses Proteins wurden transgene Fliegen, die UAS-RNAi Konstrukte in ihrem Genom tragen und durch entsprechende GAL4-Linien getrieben werden kِnnen, freundlicherweise von der kollaborierenden Arbeitsgruppe von S. Sigrist (Gِttingen) zur Verfügung gestellt. Der pan-neuronale „knock-down“ des nc82 Antigens durch transgene RNAi-Expression führt zu embryonaler Letalitنt. Eine schwنchere RNAi-Expression führt bei adulten Fliegen zu Verhaltensdefekten, wie instabilem Flug und beeintrنchtigtem Laufverhalten. Aufgrund dieser Phنnotypen, die in den ersten „knock-down“ Studien beobachtet wurden, wurde das Gen „bruchpilot“ (brp) und das zugehِrige Protein „Bruchpilot“ (BRP) genannt. Die pan-neuronale, sowie die retinaspezifische Reduktion des Proteins führt zu einem Verlust der ON und OFF Transienten des Elektroretinogramms, was auf nichtfunktionelle Synapsen hindeutet. Die retinaspezifische Reduktion des Proteins hat eine Beeintrنchtigung der optomotorischen Reaktion zur Folge. Auكerdem scheint auf der ultrastrukturellen Ebene die Bildung der charakteristischen T-fِrmigen „ribbons“ der aktiven Zonen beeintrنchtigt zu sein, jedoch ohne signifikante Verنnderungen der Gesamtarchitektur der Synapse (in Kollaboration mit E. Asan). Von Basson, einem Protein der aktiven Zone bei Vertebraten, ist bekannt, dass es an der Anheftung der synaptischen „ribbons“ an den aktiven Zonen beteiligt ist. Es fungiert als Adapter zwischen RIBEYE und ELKS/ERC/CAST, zwei weiteren Proteinen der aktiven Zone. Die Mutation von Bassoon hat zur Folge, dass die synaptischen „ribbons“ frei im Zytoplasma treiben. Für Bassoon ist kein homologes Drosophila-Protein bekannt. Die Reduktion von BRP bedingt ebenfalls ein Fehlen befestigter „ribbons“ an der aktiven Zone. Dies kِnnte auf eine Art Adapterfunktion von BRP hindeuten. Jedoch hat das Fehlen von BRP zusنtzlich zum strukturellen Phنnotyp auch deutliche Verhaltensabnormalitنten und starke physiologische Beeintrنchtigungen zur Folge. Eine noch stنrkere Reduktion bedingt auكerdem embryonale Lethalitنt, wohingegen Mausmutanten ohne Bassoon lebensfنhig sind. Daraus ergibt sich, dass BRP eine weitere, wichtige Rolle wنhrend der Entwicklung und für die Funktion von Synapsen bei Drosophila und mِglicherweise auch bei anderen Insekten einnimmt. Es muss aber noch geklنrt werden, auf welche Weise BRP die synaptische Signalübertragung reguliert und welche anderen Proteine in diesem BRP-abhنngigen Pfad involviert sind. Derartige Studien werden mit Sicherheit in der Zukunft eine bedeutende Rolle spielen. KW - Taufliege KW - Synapse KW - Proteine KW - Molekulargenetik KW - Bruchpilot KW - Drosophila-Synapse KW - Bruchpilot KW - Drosophila synapse Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14989 ER - TY - THES A1 - Schindelin, Johannes T1 - The standard brain of Drosophila melanogaster and its automatic segmentation T1 - Das Standardgehirn von Drosophila melanogaster und seine automatische Segmentierung N2 - In this thesis, I introduce the Virtual Brain Protocol, which facilitates applications of the Standard Brain of Drosophila melanogaster. By providing reliable and extensible tools for the handling of neuroanatomical data, this protocol simplifies and organizes the recurring tasks involved in these applications. It is demonstrated that this protocol can also be used to generate average brains, i.e. to combine recordings of several brains with the same features such that the common features are emphasized. One of the most important steps of the Virtual Insect Protocol is the aligning of newly recorded data sets with the Standard Brain. After presenting methods commonly applied in a biological or medical context to align two different recordings, it is evaluated to what extent this alignment can be automated. To that end, existing Image Processing techniques are assessed. I demonstrate that these techniques do not satisfy the requirements needed to guarantee sensible alignments between two brains. Then, I analyze what needs to be taken into account in order to formulate an algorithm which satisfies the needs of the protocol. In the last chapter, I derive such an algorithm using methods from Information Theory, which bases the technique on a solid mathematical foundation. I show how Bayesian Inference can be applied to enhance the results further. It is demonstrated that this approach yields good results on very noisy images, detecting apparent boundaries between structures. The same approach can be extended to take additional knowledge into account, e.g. the relative position of the anatomical structures and their shape. It is shown how this extension can be utilized to segment a newly recorded brain automatically. N2 - In dieser Arbeit wird das Virtual Brain Protocol vorgestellt, das die Anwendungen rund um das Standardgehirn von \dm\ erleichtert. Durch das Bereitstellen robuster und erweiterbarer Werkzeuge zum Verarbeiten neuroanatomischer Datensätze ermöglicht es ein strukturiertes Abarbeiten der häufig benötigten Vorgänge im Zusammenhang mit der Arbeit mit dem Standardgehirn. Neben der Einpassung neuer Daten in das Standardgehirn kann dieses Protokoll auch dazu verwendet werden, sogenannte Durchschnittshirne zu erstellen; Aufnahmen mehrerer Hirne mit der gleichen zu zeigenden Eigenschaft können zu einem neuen Datensatz kombiniert werden, der die gemeinsamen Charakteristika hervorhebt. Einer der wichtigsten Schritte im Virtual Insect Protocol ist die Alignierung neuer Datensätze auf das Standardgehirn. Nachdem Methoden vorgestellt werden, die üblicherweise im biologischen oder medizinischen Umfeld angewendet werden, um Hirne aufeinander zu alignieren, wird evaluiert, inwiefern dieser Prozess automatisierbar ist. In der Folge werden diverse bildverarbeitende Methoden in dieser Hinsicht beurteilt. Es wird demonstriert, dass diese Verfahren den Anforderungen sinnvoller Alignierungen von Hirnen nicht genügen. Infolgedessen wird genauer analysiert, welche Umstände berücksichtigt werden müssen, um einen Algorithmus zu entwerfen, der diesen Anforderungen genügt. Im letzten Kapitel wird ein solcher Algorithmus mithilfe von Methoden aus der Informationstheorie hergeleitet, deren Verwendung das Verfahren auf eine solide mathematische Basis stellt. Es wird weiterhin gezeigt, wie Bayesische Inferenz angewendet werden kann, um die Ergebnisse darüber hinaus zu verbessern. Sodann wird demonstriert, daß dieser Algorithmus in stark verrauschten Bilddaten ohne zusätzliche Informationen Grenzen zwischen Strukturen erkennen kann, die mit den sichtbaren Grenzen gut übereinstimmen. Das Verfahren kann erweitert werden, um zusätzliche Informationen zu berücksichtigen, wie etwa die relative Position anatomischer Strukturen sowie deren Form. Es wird gezeigt, wie diese Erweiterung zur automatischen Segmentierung eines Hirnes verwendet werden kann. KW - Taufliege KW - Gehirn KW - Segmentierung KW - Bildverarbeitung KW - Drosophila KW - Segmentierung KW - Kantenerkennung KW - Statistik KW - Bildverarbeitung KW - Drosophila KW - segmentation KW - EdgeDetection KW - statistics KW - ImageProcessing Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15518 ER - TY - THES A1 - Masek, Pavel T1 - Odor intensity learning in Drosophila T1 - Duftintensitätslernen bei Drosophila N2 - It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory. N2 - Assoziatives olfaktorisches Lernen bei Drosophila wurde ursprünglich als die Paarung eines Duftes mit einem elektrischen Bestrafungsreiz beschrieben. Seit langem ist dazu bekannt, daß Drosophila nicht nur lernen kann zwei Düfte zu unterscheiden, sondern auch verschiedene Konzentrationen desselben Dufts. Jedoch wird in den meisten auf diese Art durchgeführten Experimenten die Duftintensität weitestgehend ignoriert. - Für das olfaktorische Kurzzeitgedächtnis wurde ein biochemisches Modell vorgeschlagen, welches sich hauptsächlich auf die bekannte cAMP-Signalkaskade stützt. Es wurde gezeigt, dass die Pilzkörper (mushroom bodies, „MB“) notwendig und hinreichend für diese Art der Gedächtnisbildung sind und ein MB-Modell für Duftlernen und Kurzzeitgedächtnis konnte etabliert werden. Interessanterweise sollten Fliegen nach diesem Modell Konzentrationsunterschiede nur in einer Richtung lernen können. Sie würden den gelernten Duft nur gegenüber einer niedrigeren Konzentration wiedererkennen. In der vorliegenden Doktorarbeit habe ich das konzentrationsabhängige Duftlernen und seine Beziehung zum MB-Modell untersucht. Dabei hat sich gezeigt, dass die Fliege eine Gedächtnisspur für Geruchsintensität anlegt. Um den Unterschied zwischen dem Lernen einer Qualität und dem einer Intensität des gleichen Duftes hervorzuheben, habe ich versucht, den Reiz, der eigentlich von der Fliege gelernt wird, zu charakterisieren. Dies führte zu der Schlussfolgerung, dass die Fliege während des Trainings alle in diesem Zeitabschnitt präsentierten Reize erlernt. Erst der dem Training folgende Test scheint den Gebrauch der verfügbaren Information festzulegen. Diese Erkenntnis ist eine wesentliche Grundlage um zwischen dem Testergebnis und dem, was die Fliege gelernt hat zu unterscheiden. Ich habe außerdem gezeigt, daß das Konzentrationslernen eine Form assoziativen Lernens ist und, dass entgegen der Erwartung nach dem MB-Modell eine Symmetrie zwischen den Lernwerten für die hohe und niedrige Konzentration besteht. Es gibt keinen Beweis dafür, dass Fliegen eine Vielfalt von Konzentrationen desselben Duftes als ein und dieselbe (Duft-)Qualität wahrnehmen. Die Ergebnisse legen vielmehr nahe, dass sich bei einer größeren Veränderung der Intensität eines Duftes für die Fliege (wie in vielen Fällen auch beim Menschen) seine Qualität verändert. Demzufolge ist mit jedem Geruchsstoff mehr als nur eine Fliegen-subjektive Geruchsqualität verbunden. Fliegen zeigen andererseits in engen Grenzen Konzentrationsinvarianz. Sie generalisieren zwischen Konzentrationen eines Duftes innerhalb einer Konzentrationsdekade. Deshalb ist das Konzept des Konzentrationslernens nur für ein begrenztes Konzentrationsspektrum innerhalb der Grenzen der Konzentrationsinvarianz relevant. Des weiteren habe ich gezeigt, dass unter besonderen Bedingungen zwei chemisch verschiedene Düfte generalisiert werden können. Möglicherweise haben die beiden Düfte hinreichend "ähnliche" oder gleiche Fliegen-subjektive Qualität und können nur nach der Intensität unterschieden werden. Die Fliege hat die Fähigkeit im Test Unterschiede einerseits in der Qualität und andererseits in der Intensität des Reizes zu ermitteln. Die Art und Weise, wie der Reiz analysiert und verarbeitet wird, erfordern ein Konzept zweier getrennter Gedächtnisse. Dementsprechend habe ich eine neue Gedächtnisart, ein sogenanntes Duftintensitätsgedächtnis (OIM) vorgeschlagent und versucht dieses neben anderen olfaktorischen Gedächtnissen einzuordnen. Das OIM ist unabhängig bezüglich einiger Bestandteile des bekannten cAMP-Signalwegs und stellt höchstwahrscheinlich den rutabaga-unabhängigen Teil des Zwei-Düfte-Lernens dar. Das rutabaga-abhängige Duftgedächtnis benötigt qualitativ verschiedene Duftreize. Das OIM reicht lediglich für eine suboptimale Leistung aus, funktioniert aber in den Grenzen der Konzentrationsinvarianz, innerhalb derer die Diskriminierung und damit auch das Lernen der Duftqualität nicht möglich sind. Das OIM scheint wie die Duftqualitätsgedächtnisse die Pilzkörper zu benötigen. Aber die Art der Speicherung ist von der der Duftqualitätsgedächtnisse verschieden. Fliegen können viele Duftqualitäten zu einem bestimmten Zeitpunkt aus dem Gedächtnis abrufen, jedoch interferiert ein neu gebildetes Gedächtnis eines bestimmten Duftes mit dem bereits gespeicherten OIM. Außerdem ist das OIM für nur 1-3 Stunden stabil, was erheblich kürzer als beim Duftgedächtnis ist. KW - Taufliege KW - Geruchswahrnehmung KW - Gedächtnis KW - Lernen KW - Intensität KW - Olfaktorik KW - Lernen KW - Gedächtnis KW - Drosophila KW - intensity KW - olfaction KW - memory KW - learning KW - Drosophila Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15546 ER -