TY - JOUR A1 - Reimann, Hauke A1 - Stopper, Helga A1 - Polak, Thomas A1 - Lauer, Martin A1 - Herrmann, Martin J. A1 - Deckert, Jürgen A1 - Hintzsche, Henning T1 - Micronucleus frequency in buccal mucosa cells of patients with neurodegenerative diseases JF - Scientific Reports N2 - Neurodegenerative diseases show an increase in prevalence and incidence, with the most prominent example being Alzheimer's disease. DNA damage has been suggested to play a role in the pathogenesis, but the exact mechanisms remain elusive. We enrolled 425 participants with and without neurodegenerative diseases and analyzed DNA damage in the form of micronuclei in buccal mucosa samples. In addition, other parameters such as binucleated cells, karyolytic cells, and karyorrhectic cells were quantified. No relevant differences in DNA damage and cytotoxicity markers were observed in patients compared to healthy participants. Furthermore, other parameters such as lifestyle factors and diseases were also investigated. Overall, this study could not identify a direct link between changes in buccal cells and neurogenerative diseases, but highlights the influence of lifestyle factors and diseases on the human buccal cytome. KW - peripheral-blood lymphocytes KW - Alzheimers disease KW - DNA damage KW - cognitive impairment KW - cytome biomarkers KW - diagnosis KW - association KW - assay KW - life Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231430 VL - 10 ER - TY - JOUR A1 - Schwarzmeier, Hanna A1 - Leehr, Elisabeth Johanna A1 - Böhnlein, Joscha A1 - Seeger, Fabian Reinhard A1 - Roesmann, Kati A1 - Gathmann, Bettina A1 - Herrmann, Martin J. A1 - Siminski, Niklas A1 - Junghöfer, Markus A1 - Straube, Thomas A1 - Grotegerd, Dominik A1 - Dannlowski, Udo T1 - Theranostic markers for personalized therapy of spider phobia: Methods of a bicentric external cross‐validation machine learning approach JF - International Journal of Methods in Psychiatric Research N2 - Objectives Embedded in the Collaborative Research Center “Fear, Anxiety, Anxiety Disorders” (CRC‐TRR58), this bicentric clinical study aims at identifying biobehavioral markers of treatment (non‐)response by applying machine learning methodology with an external cross‐validation protocol. We hypothesize that a priori prediction of treatment (non‐)response is possible in a second, independent sample based on multimodal markers. Methods One‐session virtual reality exposure treatment (VRET) with patients with spider phobia was conducted on two sites. Clinical, neuroimaging, and genetic data were assessed at baseline, post‐treatment and after 6 months. The primary and secondary outcomes defining treatment response are as follows: 30% reduction regarding the individual score in the Spider Phobia Questionnaire and 50% reduction regarding the individual distance in the behavioral avoidance test. Results N = 204 patients have been included (n = 100 in Würzburg, n = 104 in Münster). Sample characteristics for both sites are comparable. Discussion This study will offer cross‐validated theranostic markers for predicting the individual success of exposure‐based therapy. Findings will support clinical decision‐making on personalized therapy, bridge the gap between basic and clinical research, and bring stratified therapy into reach. The study is registered at ClinicalTrials.gov (ID: NCT03208400). KW - machine learning KW - spider phobia KW - theranostic markers Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213430 VL - 29 IS - 2 ER -