TY - JOUR A1 - Radeloff, Katrin A1 - Ramos Tirado, Mario A1 - Haddad, Daniel A1 - Breuer, Kathrin A1 - Müller, Jana A1 - Hochmuth, Sabine A1 - Hackenberg, Stephan A1 - Scherzad, Agmal A1 - Kleinsasser, Norbert A1 - Radeloff, Andreas T1 - Superparamagnetic iron oxide particles (VSOPs) show genotoxic effects but no functional impact on human adipose tissue-derived stromal cells (ASCs) JF - Materials N2 - Adipose tissue-derived stromal cells (ASCs) represent a capable source for cell-based therapeutic approaches. For monitoring a cell-based application in vivo, magnetic resonance imaging (MRI) of cells labeled with iron oxide particles is a common method. It is the aim of the present study to analyze potential DNA damage, cytotoxicity and impairment of functional properties of human (h)ASCs after labeling with citrate-coated very small superparamagnetic iron oxide particles (VSOPs). Cytotoxic as well as genotoxic effects of the labeling procedure were measured in labeled and unlabeled hASCs using the MTT assay, comet assay and chromosomal aberration test. Trilineage differentiation was performed to evaluate an impairment of the differentiation potential due to the particles. Proliferation as well as migration capability were analyzed after the labeling procedure. Furthermore, the labeling of the hASCs was confirmed by Prussian blue staining, transmission electron microscopy (TEM) and high-resolution MRI. Below the concentration of 0.6 mM, which was used for the procedure, no evidence of genotoxic effects was found. At 0.6 mM, 1 mM as well as 1.5 mM, an increase in the number of chromosomal aberrations was determined. Cytotoxic effects were not observed at any concentration. Proliferation, migration capability and differentiation potential were also not affected by the procedure. Labeling with VSOPs is a useful labeling method for hASCs that does not affect their proliferation, migration and differentiation potential. Despite the absence of cytotoxicity, however, indications of genotoxic effects have been demonstrated. KW - ASCs KW - adipose tissue-derived stromal cells KW - VSOP KW - iron oxide nanoparticles KW - toxicity KW - MRI KW - cell labeling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222970 SN - 1996-1944 VL - 14 IS - 2 ER - TY - JOUR A1 - Schendzielorz, P. A1 - Froelich, K. A1 - Rak, K. A1 - Gehrke, T. A1 - Scherzad, A. A1 - Hagen, R. A1 - Radeloff, A. T1 - Labeling Adipose-Derived Stem Cells with Hoechst 33342: Usability and Effects on Differentiation Potential and DNA Damage JF - Stem Cells International N2 - Adipose-derived stem cells (ASCs) have been extensively studied in the field of stem cell research and possess numerous clinical applications. Cell labeling is an essential component of various experimental protocols and Hoechst 33342 (H33342) represents a cost-effective and easy methodology for live staining. The purpose of this study was to evaluate the labeling of rat ASCs with two different concentrations of H33342 (0.5 μg/mL and 5 μg/mL), with particular regard to usability, interference with cell properties, and potential DNA damage. Hoechst 33342 used at a low concentration of 0.5 μg/mL did not significantly affect cell proliferation, viability, or differentiation potential of the ASCs, nor did it cause any significant DNA damage as measured by the olive tail moment. High concentrations of 5 μg/mL H33342, however, impaired the proliferation and viability of the ASCs, and considerable DNA damage was observed. Undesirable colabeling of unlabeled cocultivated cells was seen in particular with higher concentrations of H33342, independent of varying washing procedures. Hence, H33342 labeling with lower concentrations represents a usable method, which does not affect the tested cell properties. However, the colabeling of adjacent cells is a drawback of the technique. KW - cell labeling KW - adipose-derived stem cells KW - Hoechst 33342 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181268 ER -