TY - JOUR A1 - Mueller, Stefan A1 - Lüttig, Julian A1 - Malý, Pavel A1 - Ji, Lei A1 - Han, Jie A1 - Moos, Michael A1 - Marder, Todd B. A1 - Bunz, Uwe H. F. A1 - Dreuw, Andreas A1 - Lambert, Christoph A1 - Brixner, Tobias T1 - Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways JF - Nature Communications N2 - Coherent two-dimensional spectroscopy is a powerful tool for probing ultrafast quantum dynamics in complex systems. Several variants offer different types of information but typically require distinct beam geometries. Here we introduce population-based three-dimensional (3D) electronic spectroscopy and demonstrate the extraction of all fourth- and multiple sixth-order nonlinear signal contributions by employing 125-fold (1⨯5⨯5⨯5) phase cycling of a four-pulse sequence. Utilizing fluorescence detection and shot-to-shot pulse shaping in single-beam geometry, we obtain various 3D spectra of the dianion of TIPS-tetraazapentacene, a fluorophore with limited stability at ambient conditions. From this, we recover previously unknown characteristics of its electronic two-photon state. Rephasing and nonrephasing sixth-order contributions are measured without additional phasing that hampered previous attempts using noncollinear geometries. We systematically resolve all nonlinear signals from the same dataset that can be acquired in 8 min. The approach is generalizable to other incoherent observables such as external photoelectrons, photocurrents, or photoions. KW - Atomic and molecular interactions with photons KW - Optical spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202529 VL - 10 ER - TY - JOUR A1 - Malý, Pavel A1 - Brixner, Tobias T1 - Fluorescence‐Detected Pump–Probe Spectroscopy JF - Angewandte Chemie International Edition N2 - We introduce a new approach to transient spectroscopy, fluorescence‐detected pump–probe (F‐PP) spectroscopy, that overcomes several limitations of traditional PP. F‐PP suppresses excited‐state absorption, provides background‐free detection, removes artifacts resulting from pump–pulse scattering, from non‐resonant solvent response, or from coherent pulse overlap, and allows unique extraction of excited‐state dynamics under certain conditions. Despite incoherent detection, time resolution of F‐PP is given by the duration of the laser pulses, independent of the fluorescence lifetime. We describe the working principle of F‐PP and provide its theoretical description. Then we illustrate specific features of F‐PP by direct comparison with PP, theoretically and experimentally. For this purpose, we investigate, with both techniques, a molecular squaraine heterodimer, core–shell CdSe/ZnS quantum dots, and fluorescent protein mCherry. F‐PP is broadly applicable to chemical systems in various environments and in different spectral regimes. KW - femtochemistry KW - FL spectroscopy KW - time-resolved spectroscopy KW - transient absorption Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244811 VL - 60 IS - 34 SP - 18867 EP - 18875 ER - TY - INPR A1 - Fersch, Daniel A1 - Malý, Pavel A1 - Rühe, Jessica A1 - Lisinetskii, Victor A1 - Hensen, Matthias A1 - Würthner, Frank A1 - Brixner, Tobias T1 - Single-Molecule Ultrafast Fluorescence-Detected Pump–Probe Microscopy N2 - We introduce fluorescence-detected pump–probe microscopy by combining a wavelength-tunable ultrafast laser with a confocal scanning fluorescence microscope, enabling access to the femtosecond time scale on the micrometer spatial scale. In addition, we obtain spectral information from Fourier transformation over excitation pulse-pair time delays. We demonstrate this new approach on a model system of a terrylene bisimide (TBI) dye embedded in a PMMA matrix and acquire the linear excitation spectrum as well as time-dependent pump–probe spectra simultaneously. We then push the technique towards single TBI molecules and analyze the statistical distribution of their excitation spectra. Furthermore, we demonstrate the ultrafast transient evolution of several individual molecules, highlighting their different behavior in contrast to the ensemble due to their individual local environment. By correlating the linear and nonlinear spectra, we assess the effect of the molecular environment on the excited-state energy. KW - Fluoreszenz KW - Ultrafast spectroscopy KW - Single-molecule microscopy Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313485 ER -