TY - THES A1 - Biswas, Kajal T1 - Analysis of Nitrogen starvation induced filamentous growth and characterization of putative essential genes in the human fungal pathogen, Candida albicans N2 - 1. Zusammenfassung Candida albicans ist ein opportunistisch pathogener Hefepilz, der sowohl oberflächliche Infektionen der Schleimhaut als auch lebensbedrohliche systemische Infektionen hervorrufen kann. Obwohl die Fähigkeit von C.albicans Infektionen auszulösen weitgehend vom Immunstatus des Wirts abhängt, besitzt der Pilz doch auch spezifische Eigenschaften, die eine Kolonisierung, Disseminierung und Anpassung an unterschiedliche Wirtsnischen ermöglichen und ihn vom harmlosen Kommensalen zum gefährlichen Krankheitsserreger werden lassen. Unter bestimmten Umweltbedingungen geht C.albicans vom Wachstum als sprossende Hefe zum invasiven, filamentösen Wachstum über, das eine wichtige Rolle in der Pathogenität des Pilzes spielt. Stickstoffmangel ist eines der Signale, die das filamentöse Wachstum in C.albicans induzieren, und die Kontrolle der Morphogenese durch die Verfügbarkeit von Stickstoff wurde in dieser Arbeit detailliert untersucht. Ammonium ist für Hefepilze eine bevorzugte Stickstoffquelle, die über spezifische Transporter in die Zelle aufgenommen wird. In der vorliegenden Arbeit konnte gezeigt werden, dass C.albicans zwei Ammoniumpermeasen besitzt, deren Expression durch Stickstoffmangel induziert wird. Während die Deletion von CaMEP1 oder CaMEP2 keinen Einfluss auf das Wachstum bei limitierenden Ammoniumkonzentrationen hatte, konnten mep1 mep2 Doppelmutanten bei Ammoniumkonzentrationen unter 5 mM nicht mehr wachsen. Im Gegensatz zu mep1 Mutanten bildeten mep2 Mutanten unter Stickstoffmangel keine Hyphen mehr und wuchsen ausschließlich in der Hefeform. CaMep2p hat also nicht nur eine Funktion als Ammoniumtransporter, sondern spielt auch eine Rolle bei der Induktion des filamentösen Wachstums. Weitere Experimente zeigten, dass CaMep2p ein weniger effizienter Ammoniumtransporter als CaMep1p ist, dafür aber stärker exprimiert wird, und dass dieser Unterschied wichtig für die Signalfunktion von CaMep2p ist. Durch Deletionsanalysen konnte bewiesen werden, dass die C-terminale, cytoplasmatische Domäne von CaMep2p essentiell für die Induktion des Hyphenwachstums ist, für den Ammoniumtransport jedoch nicht benötigt wird, und diese beiden Funktionen von CaMep2p daher voneinander getrennt werden können. In C.albicans gibt es mindestens zwei Signalwege die das filamentöse Wachstum steuern, eine MAP-Kinase-Kaskade und einen cAMP-abhängigen Signalweg, die in den Transkriptionsfaktoren Cph1p bzw. Efg1p enden. Bei Inaktivierung des einen oder des anderen Signalwegs induziert Stickstoffmangel kein filamentöses Wachstum mehr. Ein hyperaktives CaMEP2 Allel konnte den filamentösen Wachstumsdefekt sowohl von cph1 als auch efg1 Mutanten aufheben, nicht jedoch den einer cph1 efg1 Doppelmutante oder einer Mutante, der das G-Protein Ras1p fehlte, das beide Signalwege aktiviert. Umgekehrt wurde der filamentöse Wachstumsdefekt von mep2 Mutanten durch ein dominant-aktives RAS1 Allel bzw. durch die Zugabe von cAMP aufgehoben. Diese Ergebnisse deuten darauf hin, dass CaMep2p bei Stickstoffmangel sowohl den MAP-Kinase- als auch den cAMP-abhängigen Signalweg aktiviert, um filamentöses Wachstum zu induzieren. In genügend hohen Konzentrationen reprimierte Ammonium das filamentöse Wachstum selbst wenn die Signalwege artifiziell aktiviert waren. Die bevorzugte Stickstoffquelle Ammonium ist deshalb ein Inhibitor der Morphogenese, der durch denselben Transporter in die Zelle aufgenommen wird, der bei Stickstoffmangel das filamentöse Wachstum von C.albicans induziert. Obwohl ein genaues Verständnis der Virulenzmechanismen von C.albicans auch neue Ansätze zur Bekämpfung von Infektionen durch diesen Pilz liefern kann, ist doch die Identifizierung und Charakterisierung von essentiellen Genen als potentielle Ziele für die Entwicklung neuer Antimykotika eine Strategie, die von der pharmazeutischen Industrie favorisiert wird. Aus diesem Grund wurden in Zusammenarbeit mit einem Industriepartner drei Gene von C.albicans ausgewählt, die in anderen Pilzen als essentiell beschrieben wurden, und im Rahmen dieser Arbeit funktionell charakterisiert. RAP1 codiert für das Repressor/Aktivator Protein 1, ein Transkriptionsfaktor und Telomerbindeprotein, das in der Bäckerhefe Saccharomyces cerevisiae essentiell ist. Die Deletion des RAP1 Gens in C.albicans beeinträchtigte jedoch nicht die Lebensfähigkeit der Mutanten, so dass RAP1 kein vielversprechendes Ziel darstellt. CBF1 (centromere binding factor 1) ist in S.cerevisiae wichtig für die korrekte Chromosomenverteilung während der Mitose und außerdem auch für die transkriptionelle Aktivierung der Methioninbiosynthesegene; in den verwandten Hefen Kluyveromyces lactis und Candida glabrata ist CBF1 sogar essentiell. C.albicans cbf1 Mutanten wiesen jedoch keinen erhöhten Chromosomenverlust auf, so dass CBF1 hier offensichtlich keine Rolle bei der Chromosomensegregation spielt. Allerdings waren die Mutanten auxotroph für schwefelhaltige Aminosäuren und generell stark im Wachstum beeinträchtigt, was zeigte, dass Cbf1p für das normale Wachstum von C.albicans wichtig ist. YIL19 ist in S.cerevisiae ein essentielles Gen und hat eine Funktion bei der Reifung der 18S rRNA. YIL19 stellte sich auch in C.albicans als essentiell heraus. Konditionale Mutanten, in denen YIL19 durch induzierbare, FLP-vermittelte Rekombination aus dem Genom deletiert wurde, waren nicht lebensfähig und akkumulierten rRNA Vorstufen. Durch diese Untersuchungen konnte gezeigt werden, dass YIL19 essentiell für diesen wichtigen zellulären Prozess und für die Lebensfähigkeit von C.albicans ist und sich möglicherweise als Ziel für die Entwicklung antifungaler Substanzen eignet. N2 - 1. Summary Candida albicans is an opportunistic human fungal pathogen that causes a variety of infections, ranging from superficial mucosal to deep-seated systemic infections, especially in immunocompromised patients. Although the ability of C.albicans to cause disease largely depends on the immune status of the host, the fungus also exhibits specific characteristics that facilitate colonization, dissemination, and adaptation to different host niches and thereby turn C.albicans from a harmless commensal to an aggressive pathogen. In response to various environmental stimuli C.albicans switches from growth as a budding yeast to invasive filamentous growth, and this morphogenetic switch plays an important role in C.albicans pathogenesis. Nitrogen limitation is one of the signals that induce filamentous growth in C.albicans, and the control of the morphogenetic transition by nitrogen availability was studied in detail in the present work. Ammonium is a preferred nitrogen source for yeasts that is taken up into the cells by specific transporters. It was found in this study that C.albicans possesses two major ammonium transporters, encoded by the CaMEP1 and CaMEP2 genes, expression of which is induced by nitrogen starvation. Whereas mep1 or mep2 single mutants grew as well as the wild-type strain on limiting concentrations of ammonium, deletion of both transporters rendered C.albicans unable to grow at ammonium concentrations below 5 mM. In contrast to mep1 mutants, mep2 mutants failed to filament and grew only in the yeast form under nitrogen starvation conditions, indicating that in addition to its role as an ammonium transporter CaMep2p also has a signaling function in the induction of filamentous growth. CaMep2p was found to be a less efficient ammonium transporter than CaMep1p and to be expressed at much higher levels, a distinguishing feature important for its signaling function. By the construction and analysis of serially truncated versions of CaMep2p, the C-terminal cytoplasmic tail of the protein was shown to be essential for signaling but dispensable for ammonium transport, demonstrating that these two functions of CaMep2p are separable. In C.albicans at least two signal transduction pathways, a MAP kinase cascade and a cAMP-dependent pathway ending in the transcriptional regulators Cph1p and Efg1p, respectively, control filamentous growth, and mutants defective in either one of these pathways are defective for filamentation under nitrogen starvation conditions. A hyperactive CaMEP2 allele rescued the filamentation defect of a cph1 or a efg1 mutant, but not of a cph1 efg1 double mutant or a mutant deleted for RAS1, which acts upstream of and activates both signaling pathways. Conversely, a dominant active RAS1 allele or addition of exogenous cAMP rescued the filamentation defect of mep2 mutants. These results suggest that CaMep2p activates both the MAP kinase and the cAMP pathway in a Ras1p dependent manner to promote filamentous growth under nitrogen starvation conditions. At sufficiently high concentrations, ammonium repressed filamentous growth even when the signaling pathways were artificially activated. Therefore, C.albicans has established a regulatory circuit in which a preferred nitrogen source, ammonium, serves as an inhibitor of morphogenesis that is taken up into the cell by the same transporter that induces filamentous growth in response to nitrogen starvation. Although a detailed understanding of virulence mechanisms of C.albicans may ultimately lead to novel approaches to combat infections caused by this pathogen, the identification and characterization of essential genes as potential targets for the development of antifungal drugs is a strategy favoured by most pharmaceutical companies. Therefore, C.albicans homologs of three genes that are essential in other fungi were selected in collaboration with an industrial partner and functionally characterized in this work. RAP1 encodes the repressor/activator protein 1, a transcription factor and telomere binding protein that is essential for viability in the budding yeast Saccharomyces cerevisiae. However, deletion of the C.albicans RAP1 homolog did not affect viability or growth of the mutants, suggesting that it is not a promising target. CBF1 (centromere binding factor 1) is necessary for proper chromosome segregation and transcriptional activation of methionine biosynthesis genes in S.cerevisiae and is essential for viability in the related yeasts Kluyveromyces lactis and Candida glabrata. Deletion of CBF1 in C.albicans did not result in an increased frequency of chromosome loss, indicating that it has no role in chromosome segregation in this organism. However, the C.albicans cbf1 mutants exhibited severe growth impairment, temperature sensitivity at 42°C, and auxotrophy for sulphur amino acids, suggesting that Cbf1p is a transcription factor that is important for normal growth of C.albicans. YIL19 is an essential gene in S.cerevisiae that is involved in 18S rRNA maturation. YIL19 was found to be an essential gene also in C.albicans. Conditional mutants in which the YIL19 gene could be excised from the genome by inducible, FLP-mediated recombination were non-viable and accumulated rRNA precursors, demonstrating that YIL19 is essential for this important cellular process and for viability of C.albicans and could serve as a target for the development of antifungal drugs. KW - Candida albicans KW - Pathogenität KW - Stickstoff KW - Candida albicans KW - ammonium permease KW - nitrogen regulation KW - essential gene Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11554 ER - TY - JOUR A1 - Sasse, Christoph A1 - Schillig, Rebecca A1 - Dierolf, Franziska A1 - Weyler, Michael A1 - Schneider, Sabrina A1 - Mogavero, Selene A1 - Rogers, David P. A1 - Morschhäuser, Joachim T1 - The Transcription Factor Ndt80 Does Not Contribute to Mrr1-, Tac1-, and Upc2-Mediated Fluconazole Resistance in Candida albicans N2 - The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis, by the overexpression of genes encoding multidrug efflux pumps or ergosterol biosynthesis enzymes. Zinc cluster transcription factors play a central role in the transcriptional regulation of drug resistance. Mrr1 regulates the expression of the major facilitator MDR1, Tac1 controls the expression of the ABC transporters CDR1 and CDR2, and Upc2 regulates ergosterol biosynthesis (ERG) genes. Gain-of-function mutations in these transcription factors result in constitutive overexpression of their target genes and are responsible for fluconazole resistance in many clinical C. albicans isolates. The transcription factor Ndt80 contributes to the drug-induced upregulation of CDR1 and ERG genes and also binds to the MDR1 and CDR2 promoters, suggesting that it is an important component of all major transcriptional mechanisms of fluconazole resistance. However, we found that Ndt80 is not required for the induction of MDR1 and CDR2 expression by inducing chemicals. CDR2 was even partially derepressed in ndt80D mutants, indicating that Ndt80 is a repressor of CDR2 expression. Hyperactive forms of Mrr1, Tac1, and Upc2 promoted overexpression of MDR1, CDR1/CDR2, and ERG11, respectively, with the same efficiency in the presence and absence of Ndt80. Mrr1- and Tac1-mediated fluconazole resistance was even slightly enhanced in ndt80D mutants compared to wild-type cells. These results demonstrate that Ndt80 is dispensable for the constitutive overexpression of Mrr1, Tac1, and Upc2 target genes and the increased fluconazole resistance of strains that have acquired activating mutations in these transcription factors. KW - Candida albicans Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69201 ER - TY - THES A1 - Dunkel, Nico T1 - Regulation of virulence-associated traits of the human fungal pathogen Candida albicans by nitrogen availability T1 - Regulation Virulenz-assoziierter Faktoren im humanpathogenen Pilz Candida albicans durch Stickstoffverfügbarkeit N2 - Nitrogen-regulated pathogenesis describes the expression of virulence attributes as direct response to the quantity and quality of an available nitrogen source. As consequence of nitrogen availability, the opportunistic human fungal pathogen Candida albicans changes its morphology and secretes aspartic proteases [SAPs], both well characterized virulence attributes. C. albicans, contrarily to its normally non-pathogenic relative Saccharomyces cerevisiae, is able to utilize proteins, which are considered as abundant and important nitrogen source within the human host. To assimilate complex proteinaceous matter, extracellular proteolysis is followed by uptake of the degradation products through dedicated peptide transporters (di-/tripeptide transporters [PTRs] and oligopeptide transporters [OPTs]). The expression of both traits is transcriptionally controlled by Stp1 - the global regulator of protein utilization - in C. albicans. The aim of the present study was to elucidate the regulation of virulence attributes of the pathogenic fungus C. albicans by nitrogen availability in more detail. Within a genome wide binding profile of Stp1, during growth with proteins, more than 600 Stp1 target genes were identified, thereby confirming its role in the usage of proteins, but also other nitrogenous compounds as nitrogen source. Moreover, the revealed targets suggest an involvement of Stp1 in the general adaption to nutrient availability as well as in the environmental stress response. With the focus on protein utilization and nitrogen-regulated pathogenesis, the regulation of the major secreted aspartic protease Sap2 - additionally one of the prime examples of allelic heterogeneity in C. albicans - was investigated in detail. Thereby, the heterogezygous SAP2 promoter helped to identify an unintended genomic alteration as the true cause of a growth defect of a C. albicans mutant. Additionally, the promoter region, which was responsible for the differential activation of the SAP2 alleles, was delimited. Furthermore, general Sap2 induction was demonstrated to be mediated by distinct cis-acting elements that are required for a high or a low activity of SAP2 expression. For the utilization of proteins as nitrogen source it is also crucial to take up the peptides that are produced by extracellular proteolysis. Therefore, the function and importance of specific peptide transporters was investigated in C. albicans mutants, unable to use peptides as nitrogen source (opt1Δ/Δ opt2Δ/Δ opt3Δ/Δ opt4Δ/Δ opt5Δ/Δ ptr2Δ/Δ ptr22Δ/Δ septuple null mutants). The overexpression of individual transporters in these mutants revealed differential substrate specificities and expanded the specificity of the OPTs to dipeptides, a completely new facet of these transporters. The peptide-uptake deficient mutants were further used to elucidate, whether indeed proteins and peptides are an important in vivo nitrogen source for C. albicans. It was found that during competitive colonization of the mouse intestine these mutants exhibited wild-type fitness, indicating that neither proteins nor peptides are primary nitrogen sources required to efficiently support growth of C. albicans in the mouse gut. Adequate availability of the preferred nitrogen source ammonium represses the utilization of proteins and other alternative nitrogen sources, but also the expression of virulence attributes, like Sap secretion and nitrogen-starvation induced filamentation. In order to discriminate, whether ammonium availability is externally sensed or determined inside the cell by C. albicans, the response to exterior ammonium concentrations of ammonium-uptake deficient mutants (mep1Δ/Δ mep2Δ/Δ null mutants) was investigated. This study showed that presence of an otherwise suppressing ammonium concentration did not inhibit Sap2 proteases secretion and arginine-induced filamentation in these mutants. Conclusively, ammonium availability is primarily determined inside the cell in order to control the expression of virulence traits. In sum, the present work contributes to the current understanding of how C. albicans regulates expression of virulence-associated traits in response to the presence of available nitrogen sources - especially proteins and peptides - in order to adapt its lifestyle within a human host. N2 - Stickstoffregulierte Pathogenität bezeichnet die Kontrolle von Virulenz-assoziierten Eigenschaften als direkte Folge der verfügbaren Quantität und Qualität einer Stickstoffquelle. Im Zusammenhang mit der Stickstoffverfügbarkeit verändert der opportunistisch krankheitserregende Pilz Candida albicans seine Morphologie und sekretiert Aspartat-Proteasen [SAPs], beides gut charakterisierte Virulenzattribute. Im Gegensatz zu seinem normalerweise apathogenen Verwandten Saccharomyces cerevisiae ist C. albicans in der Lage Proteine zu verwerten, welche als sehr häufige und wichtige Stickstoffquelle im menschlichen Wirt angesehen werden. Zur Nutzung von Proteinen sekretiert C. albicans Aspartat-Proteasen für den außerzellulären Verdau der Proteine und exprimiert Peptidtransporter (Di- /Tripeptidtransporter [PTRs] und Oligopeptidtransporter [OPTs]) um die Abbauprodukte aufzunehmen. Beide Eigenschaften werden transkriptionell von Stp1 - dem globalen Regulator zur Verwertung von Proteinen - kontrolliert. Ziel der vorliegenden Arbeit war es, die Regulation von Virulenzattributen im pathogenen Pilz C. albicans durch die Verfügbarkeit von Stickstoff genauer zu untersuchen. Innerhalb einer genomweiten Bindestudie von Stp1 wurden mehr als 600 Stp1-Zielgene während des Wachstums mit Proteinen identifiziert. Dadurch bestätigte sich die Funktion von Stp1 in der Proteinverwertung und wurde zudem auch auf die allgemeine Verwertung von Stickstoffquellen erweitert. Des Weiteren deuten die aufgedeckten Zielgene an, dass Stp1 womöglich in der Adaption an die generelle Nährstoffverfügbarkeit sowie in der Antwort auf Stresssignale beteiligt ist. Mit dem Fokus auf die Proteinverwertung und stickstoffregulierter Pathogenität wurde die Regulation der wichtigsten sekretierten Protease Sap2 - welche außerdem ein Paradebeispiel für allelische Heterogenität ist - im Detail untersucht. Dabei half der heterogene SAP2-Promoter bei der Identifizierung einer unbeabsichtigten genomischen Veränderung als wahren Grund eines Wachstumsdefektes einer C. albicans Mutante. Zusätzlich wurde der Promotorbereich eingegrenzt, welcher für die unterschiedliche Aktivierung der beiden SAP2 Allele verantwortlich ist. Weiterhin wurden verschiedene cis-aktive Elemente identifiziert, die entweder für eine hohe oder eine niedrige SAP2 Expression benötigt werden. Die Aufnahme von Peptiden, die durch den außerzellulären Verdau entstehen, ist für die Verwertung von Proteinen ebenso wichtig. Deshalb wurde die Funktion und Bedeutung der spezifischen Peptidtransporter anhand von C. albicans Mutanten untersucht, welche Peptide nicht aufnehmen können (opt1Δ/Δ opt2Δ/Δ opt3Δ/Δ opt4Δ/Δ opt5Δ/Δ ptr2Δ/Δ ptr22Δ/Δ Septuplemutanten). Die Überexpression von individuellen Transportern in diesen Septuplemutanten offenbarte unterschiedliche Substratspezifitäten und erweiterte die Spezifität für die OPTs auf Dipeptide, eine komplett neue Facette dieser Transporter. Des Weiteren ermöglichten die Septuplemutanten eine Aufklärung, ob Proteine und Peptide tatsächlich eine wichtige In Vivo Stickstoffquelle für C. albicans sind. Dieses Arbeit zeigte, dass während der kompetitiven Kolonisierung des Mäusedarms die Septuplemutanten wildtypische Fitness aufwiesen. Dies deutet daraufhin, dass weder Proteine noch Peptide eine wichtige Stickstoffquelle für ein effizientes Wachstum in diesem In Vivo Model sind. Die ausreichende Verfügbarkeit der bevorzugten Stickstoffquelle Ammonium unterdrückt die Verwertung von Proteinen und anderen alternativen Stickstoffquellen. Aber auch die Expression von Virulenzattributen, wie die Proteasesekretion und die stickstoffmangel-induzierte Filamentierung, wird durch Ammonium inhibiert. Um zu unterscheiden, ob C. albicans die Ammoniumverfügbarkeit außerzellulär oder in der Zelle bestimmt, wurde das Verhalten auf außerzelluläre Ammoniumkonzentrationen in Mutanten untersucht, welche Ammonium nicht aufnehmen können (mep1Δ/Δ mep2Δ/Δ Mutanten). Diese Arbeit zeigte, dass in diesen Mutanten eine ansonsten inhibierende Ammoniumkonzentration nicht in der Lage war, die Sekretion der Sap2-Protease oder die Arginin-induzierte Hyphenbildung zu unterdrücken. Folglich wird, um die Expression von Virulenzattributen zu regulieren, die Ammoniumverfügbarkeit vorrangig in der Zelle bestimmt. Zusammenfassend erweitert die vorliegende Arbeit das Verständnis zur Regulation der Expression von Virulenzattributen durch die Verfügbarkeit von Stickstoffquellen - insbesondere Proteine und Peptide - die eine Anpassung von C. albicans an ein Leben im menschlichen Wirt ermöglichen. KW - Candida albicans KW - Regulation KW - Stickstoff KW - Virulenz KW - Proteasen KW - Nitrogen KW - SAP2 KW - STP1 KW - peptide KW - transport KW - ammonium KW - protease KW - Proteine Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83076 ER - TY - JOUR A1 - Schielmann, Marta A1 - Szweda, Piotr A1 - Gucwa, Katarzyna A1 - Kawczyński, Marcin A1 - Milewska, Maria J. A1 - Martynow, Dorota A1 - Morschhäuser, Joachim A1 - Milewski, Sławomir T1 - Transport deficiency is the molecular basis of \(Candida\) \(albicans\) resistance to antifungal oligopeptides JF - Frontiers in Microbiology N2 - Oligopeptides incorporating \(N3\)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP), an inhibitor of glucosamine-6-phosphate synthase, exhibited growth inhibitory activity against \(Candida\) \(albicans\), with minimal inhibitory concentration values in the 0.05–50 μg mL\(^{-1}\) range. Uptake by the peptide permeases was found to be the main factor limiting an anticandidal activity of these compounds. Di- and tripeptide containing FMDP (F2 and F3) were transported by Ptr2p/Ptr22p peptide transporters (PTR) and FMDP-containing hexa-, hepta-, and undecapeptide (F6, F7, and F11) were taken up by the oligopeptide transporters (OPT) oligopeptide permeases, preferably by Opt2p/Opt3p. A phenotypic, apparent resistance of \(C. albicans\) to FMDP-oligopeptides transported by OPT permeases was triggered by the environmental factors, whereas resistance to those taken up by the PTR system had a genetic basis. Anticandidal activity of longer FMDP-oligopeptides was strongly diminished in minimal media containing easily assimilated ammonium sulfate or L-glutamine as the nitrogen source, both known to downregulate expression of the OPT genes. All FMDP-oligopeptides tested were more active at lower pH and this effect was slightly more remarkable for peptides F6, F7, and F11, compared to F2 and F3. Formation of isolated colonies was observed inside the growth inhibitory zones induced by F2 and F3 but not inside those induced by F6, F7, and F11. The vast majority (98%) of those colonies did not originate from truly resistant cells. The true resistance of 2% of isolates was due to the impaired transport of di- and to a lower extent, tripeptides. The resistant cells did not exhibit a lower expression of \(PTR2\), \(PTR22\), or \(OPT1–3\) genes, but mutations in the \(PTR2\) gene resulting in T422H, A320S, D119V, and A320S substitutions in the amino acid sequence of Ptr2p were found. KW - microbiology KW - Candida albicans KW - oligopeptides KW - resistance mechanism KW - permease KW - antifungals Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173245 VL - 8 ER - TY - JOUR A1 - Böhm, Lena A1 - Torsin, Sanda A1 - Tint, Su Hlaing A1 - Eckstein, Marie Therese A1 - Ludwig, Tobias A1 - Pérez, J. Christian T1 - The yeast form of the fungus Candida albicans promotes persistence in the gut of gnotobiotic mice JF - PLoS Pathogens N2 - Many microorganisms that cause systemic, life-threatening infections in humans reside as harmless commensals in our digestive tract. Yet little is known about the biology of these microbes in the gut. Here, we visualize the interface between the human commensal and pathogenic fungus Candida albicans and the intestine of mice, a surrogate host. Because the indigenous mouse microbiota restricts C. albicans settlement, we compared the patterns of colonization in the gut of germ free and antibiotic-treated conventionally raised mice. In contrast to the heterogeneous morphologies found in the latter, we establish that in germ free animals the fungus almost uniformly adopts the yeast cell form, a proxy of its commensal state. By screening a collection of C. albicans transcription regulator deletion mutants in gnotobiotic mice, we identify several genes previously unknown to contribute to in vivo fitness. We investigate three of these regulators—ZCF8, ZFU2 and TRY4—and show that indeed they favor the yeast form over other morphologies. Consistent with this finding, we demonstrate that genetically inducing non-yeast cell morphologies is detrimental to the fitness of C. albicans in the gut. Furthermore, the identified regulators promote adherence of the fungus to a surface covered with mucin and to mucus-producing intestinal epithelial cells. In agreement with this result, histology sections indicate that C. albicans dwells in the murine gut in close proximity to the mucus layer. Thus, our findings reveal a set of regulators that endows C. albicans with the ability to endure in the intestine through multiple mechanisms. KW - Candida albicans KW - deletion mutagenesis KW - gastrointestinal tract KW - fungi KW - regulator genes KW - gene regulation KW - mouse models KW - fungal genetics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159120 VL - 13 IS - 10 ER - TY - JOUR A1 - Hampe, Irene A. I. A1 - Friedman, Justin A1 - Edgerton, Mira A1 - Morschhäuser, Joachim T1 - An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses JF - PLoS Pathogens N2 - The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to the widely used antifungal drug fluconazole, especially during long-term therapy of oropharyngeal candidiasis. In this study, we investigated if C. albicans also can develop resistance to the antimicrobial peptide histatin 5, which is secreted in the saliva of humans to protect the oral mucosa from pathogenic microbes. As histatin 5 has been shown to be transported out of C. albicans cells by the Flu1 efflux pump, we screened a library of C. albicans strains that contain artificially activated forms of all zinc cluster transcription factors of this fungus for increased FLU1 expression. We found that a hyperactive Mrr1, which confers fluconazole resistance by upregulating the multidrug efflux pump MDR1 and other genes, also causes FLU1 overexpression. Similarly to the artificially activated Mrr1, naturally occurring gain-of-function mutations in this transcription factor also caused FLU1 upregulation and increased histatin 5 resistance. Surprisingly, however, Mrr1-mediated histatin 5 resistance was mainly caused by the upregulation of MDR1 instead of FLU1, revealing a previously unrecognized function of the Mdr1 efflux pump. Fluconazole-resistant clinical C. albicans isolates with different Mrr1 gain-of-function mutations were less efficiently killed by histatin 5, and this phenotype was reverted when MRR1 was deleted. Therefore, antimycotic therapy can promote the evolution of strains that, as a consequence of drug resistance mutations, simultaneously have acquired increased resistance against an innate host defense mechanism and are thereby better adapted to certain host niches. KW - antimicrobial resistance KW - transcriptional control KW - Candida albicans KW - transcription factors KW - mutation KW - hyperexpression techniques KW - antifungals KW - point mutation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158883 VL - 13 IS - 9 ER - TY - THES A1 - Hampe, Irene Aurelia Ida T1 - Analysis of the mechanism and the regulation of histatin 5 resistance in \(Candida\) \(albicans\) T1 - Analyse des Mechanismus und der Regulierung von Histatin 5 Resistenz in \(Candida\) \(albicans\) N2 - Antimycotics such as fluconazole are frequently used to treat C. albicans infections of the oral mucosa. Prolonged treatment of the fungal infection with fluconazole pose a risk to resistance development. C. albicans can adapt to these stressful environmental changes by regulation of gene expression or by producing genetically altered variants that arise in the population. Adapted variants frequently carry activating mutations in zinc cluster transcription factors, which cause the upregulation of their target genes, including genes encoding efflux pumps that confer drug resistance. MDR1, regulated by the zinc cluster transcription factor Mrr1, as well as CDR1 and CDR2, regulated by the zinc cluster transcription factor Tac1, are well-known examples of genes encoding efflux pumps that extrude the antimycotic fluconazole from the fungal cell and thus contribute to the survival of the fungus. In this study, it was investigated if C. albicans can develop resistance to the antimicrobial peptide histatin 5, which serves as the first line of defence in the oral cavity of the human host. Recently, it was shown that C. albicans transports histatin 5 outside of the Candia cell via the efflux pump Flu1. As efflux pumps are often regulated by zinc cluster transcription factors, the Flu1 efflux pump could also be regulated by a zinc cluster transcription factor which could in a hyperactive form upregulate the expression of the efflux pump, resulting in increased export of histatin 5 and consequently in histatin 5 resistance. In order to find a zinc cluster transcription factor that upregulates FLU1 expression, a comprehensive library of C. albicans strains containing artificially activated forms of zinc cluster transcription factors was screened for suitable candidates. The screening was conducted on medium containing mycophenolic acid because mycophenolic acid is also a substrate of Flu1 and a strain expressing a hyperactive zinc cluster transcription factor that upregulates FLU1 expression should exhibit an easily recognisable mycophenolic acid-resistant phenotype. Further, FACS analysis, quantitative real-time RT-PCR analysis, broth microdilution assays as well as histatin 5 assays were conducted to analyse the mechanism and the regulation of histatin 5 resistance. Several zinc cluster transcription factors caused mycophenolic acid resistance and upregulated FLU1 expression. Of those, only hyperactive Mrr1 was able to confer increased histatin 5 resistance. Finding Mrr1 to confer histatin 5 resistance was highly interesting as fluconazole-resistant strains with naturally occurring Mrr1 gain of function mutations exist, which were isolated from HIV-infected patients with oral candidiasis. These Mrr1 gain of function mutations as well as artificially activated Mrr1 cause fluconazole resistance by upregulation of the efflux pump MDR1 and other target genes. In the course of the study, it was found that expression of different naturally occurring MRR1 gain-of-function mutations in the SC5314 wild type background caused increased FLU1 expression and increased histatin 5 resistance. The same was true for fluconazole-resistant clinical isolates with Mrr1 gain of function mutations, which also caused the overexpression of FLU1. Those cells were less efficiently killed by histatin 5 dependent on Mrr1. Surprisingly, FLU1 contributed only little to histatin 5 resistance, rather, overexpression of MDR1 mainly contributed to the Mrr1-mediated histatin 5 resistance, but also additional Mrr1-target genes were involved. These target genes are yet to be uncovered. Moreover, if a link between the yet unknown Mrr1-target genes contributing to fluconazole resistance and increased histatin 5 resistance can be drawn remains to be discovered upon finding of the responsible target genes. Collectively, this study contributes to the understanding of the impact of prolonged antifungal exposure on the interaction between host and fungus. Drug therapy can give rise to resistance evolution resulting in strains that have not only developed resistance to fluconazole but also to an innate host mechanism, which allows adaption to the host niche even in the absence of the drug. N2 - Antimykotika wie Fluconazol werden häufig zur Behandlung von C. albicans Infektionen der Mundschleimhaut verwendet. Dabei stellt eine langzeitige Behandlung der Pilzinfektion mit Fluconazol ein Risiko zur Resistenzentwicklung dar. C. albicans kann sich an solche Umweltveränderungen anpassen, indem es die Genexpression reguliert oder genetisch veränderte Varianten produziert, welche in der Population entstehen. Adaptierte Varianten tragen häufig aktivierende Mutationen in Zink-Cluster-Transkriptionsfaktoren, welche die Hochregulierung der Expression von Genen verursachen, darunter solche, die für Multidrug-Effluxpumpen kodieren und dadurch Antimykotikaresistenz verleihen können. MDR1, reguliert durch den Zink-Cluster-Transkriptionsfaktor Mrr1, sowie CDR1 und CDR2, reguliert durch den Zink-Cluster-Transkriptionsfaktor Tac1, sind bekannte Beispiele für Effluxpumpen, die das Antimykotikum Fluconazol aus der Pilzzelle extrudieren und somit zum Überleben der Pilzzelle beitragen. In dieser Arbeit wurde untersucht, ob C. albicans eine Resistenz gegen das antimikrobielle Peptid Histatin 5 entwickeln kann, das in der Mundhöhle des menschlichen Wirtes als erste Verteidigungsbarriere gegen den Pilz dient. Kürzlich wurde gezeigt, dass C. albicans Histatin 5 über die Effluxpumpe Flu1 aus der Candia-Zelle heraustransportiert (Li et al., 2013). Da Effluxpumpen häufig durch Zink-Cluster-Transkriptionsfaktoren reguliert werden, könnte auch die Flu1-Effluxpumpe durch solch einen Transkriptionsfaktor reguliert werden, der in einer hyperaktiven Form die Expression der Effluxpumpe hochregulieren könnte, was wiederrum zu einem erhöhten Export von Histatin 5 und folglich zur Histatin 5 Resistenz führen könnte. Um einen Zink-Cluster-Transkriptionsfaktor zu finden, der die FLU1-Expression hochreguliert, wurde mit Hilfe einer Bibliothek von C. albicans-Stämmen, die künstlich aktivierte Formen von Zink-Cluster-Transkriptionsfaktoren enthält, nach geeigneten Kandidaten gesucht. Das Screening wurde auf Mycophenolsäure-haltigem Medium durchgeführt, da Mycophenolsäure ebenfalls ein Substrat von Flu1 ist. Folglich sollte ein Stamm mit hyperaktivem Zink-Cluster-Transkriptionsfaktor, welcher die FLU1-Expression hochreguliert, einen leicht erkennbaren Mycophenolsäure-resistenten Phänotyp aufweisen. Weiterhin wurden FACS-Analysen, quantitative real-time RT-PCR-Analysen, Broth microdilution-Assays sowie Histatin 5-Assays durchgeführt, um den Mechanismus und die Regulierung der Histatin-5-Resistenz zu analysieren. Mehrere Zink-Cluster-Transkriptionsfaktoren verursachten Mycophenolsäure-Resistenz und erhöhten die FLU1-Expression. Von diesen war nur hyperaktives Mrr1 in der Lage, eine erhöhte Histatin-5-Resistenz zu verleihen. Das Auffinden von Mrr1 als Regulator der Histatin 5-Resistenz war hochinteressant, da fluconazolresistente Stämme mit natürlich vorkommenden MRR1 gain-of-function Mutationen existieren, die aus HIV-infizierten Patienten mit oropharyngealer Candidiasis isoliert wurden. Diese gain-of-function Mutationen sowie künstlich aktivierendes Mrr1 verursachen Fluconazol-Resistenz durch Hochregulation der Effluxpumpe MDR1 und anderer Zielgene. Im Verlauf der Studie wurde herausgefunden, dass verschiedene natürlich vorkommende MRR1 gain-of-function Mutationen im SC5314 Wildtyp Hintergrund eine erhöhte FLU1-Expression und eine erhöhte Histatin-5-Resistenz verursachten. Das Gleiche galt für Fluconazol-resistente klinische Isolate mit Mrr1 gain-of-function Mutationen, welche die Überexpression von FLU1 verursachten. Zellen dieser Isolate wurden, abhängig von Mrr1, weniger wirksam durch Histatin 5 abgetötet. Überraschenderweise trug FLU1 nur wenig zur Histatin-5-Resistenz bei, vielmehr trug die Überexpression von MDR1 hauptsächlich zur Mrr1-vermittelten Histatin-5-Resistenz bei, aber auch weitere Mrr1-Zielgene waren daran beteiligt. Diese Mrr1-Zielgene gilt es nun noch zu entdecken. Ob ein Zusammenhang zwischen diesen noch unbekannten Mrr1-Zielgenen hergestellt werden kann, die zur Fluconazolresistenz sowie zu einer erhöhten Histatin-5-Resistenz beitragen, wird erst nach dem Auffinden der verantwortlichen Zielgene geprüft werden können. Zusammenfassend trägt diese Studie zum Verständnis der Auswirkungen einer anhaltenden antimykotischen Exposition auf die Interaktion zwischen Wirt und Pilz bei. Eine medikamentöse Therapie kann zu einer Resistenzentwicklung führen, aus der Stämme hervorgehen, welche nicht nur eine Resistenz gegen Fluconazol entwickelt haben, sondern gleichzeitig eine Resistenz gegen einen angeborenen Wirtsabwehrmechanismus, der eine Adaption an die Wirtsnische auch in Abwesenheit des Antimykotikums ermöglicht. KW - Histatin 5 KW - Candida albicans KW - Efflux pump KW - MDR1 KW - MRR1 KW - Mrr1 KW - MDR1 KW - Fluconazole KW - Efflux pump Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159634 ER - TY - JOUR A1 - Popp, Christina A1 - Ramírez-Zavala, Bernardo A1 - Schwanfelder, Sonja A1 - Krüger, Ines A1 - Morschhäuser, Joachim T1 - Evolution of fluconazole-resistant Candida albicans strains by drug-induced mating competence and parasexual recombination JF - mBio N2 - The clonal population structure of Candida albicans suggests that (para)sexual recombination does not play an important role in the lifestyle of this opportunistic fungal pathogen, an assumption that is strengthened by the fact that most C. albicans strains are heterozygous at the mating type locus (MTL) and therefore mating-incompetent. On the other hand, mating might occur within clonal populations and allow the combination of advantageous traits that were acquired by individual cells to adapt to adverse conditions. We have investigated if parasexual recombination may be involved in the evolution of highly drug-resistant strains exhibiting multiple resistance mechanisms against fluconazole, an antifungal drug that is commonly used to treat infections by C. albicans. Growth of strains that were heterozygous for MTL and different fluconazole resistance mutations in the presence of the drug resulted in the emergence of derivatives that had become homozygous for the mutated allele and the mating type locus and exhibited increased drug resistance. When MTLa/a and MTLα/α cells of these strains were mixed in all possible combinations, we could isolate mating products containing the genetic material from both parents. The initial mating products did not exhibit higher drug resistance than their parental strains, but further propagation under selective pressure resulted in the loss of the wild-type alleles and increased fluconazole resistance. Therefore, fluconazole treatment not only selects for resistance mutations but also promotes genomic alterations that confer mating competence, which allows cells in an originally clonal population to exchange individually acquired resistance mechanisms and generate highly drug-resistant progeny. KW - Candida albicans KW - drug resistance evolution KW - mating KW - parasexual recombination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200901 VL - 10 IS - 1 ER - TY - JOUR A1 - Mottola, Austin A1 - Morschhäuser, Joachim T1 - An intragenic recombination event generates a Snf4-independent form of the essential protein kinase SNF1 in Candida albicans JF - mSphere N2 - The heterotrimeric protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans. It consists of the essential catalytic α-subunit Snf1, the γ-subunit Snf4, and one of the two β-subunits Kis1 and Kis2. Snf4 is required to release the N-terminal catalytic domain of Snf1 from autoinhibition by the C-terminal regulatory domain, and snf4Δ mutants cannot grow on carbon sources other than glucose. In a screen for suppressor mutations that restore growth of a snf4Δ mutant on alternative carbon sources, we isolated a mutant in which six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain of Snf1 were deleted. The deletion was caused by an intragenic recombination event between two 8-bp direct repeats flanking six intervening codons. In contrast to truncated forms of Snf1 that contain only the kinase domain, the Snf4-independent Snf1\(^{Δ311 − 316}\) was fully functional and could replace wild-type Snf1 for normal growth, because it retained the ability to interact with the Kis1 and Kis2 β-subunits via its C-terminal domain. Indeed, the Snf4-independent Snf1\(^{Δ311 − 316}\) still required the β-subunits of the SNF1 complex to perform its functions and did not rescue the growth defects of kis1Δ mutants. Our results demonstrate that a preprogrammed in-frame deletion event within the SNF1 coding region can generate a mutated form of this essential kinase which abolishes autoinhibition and thereby overcomes growth deficiencies caused by a defect in the γ-subunit Snf4. KW - AMP-activated kinases KW - Candida albicans KW - genetic recombination KW - metabolic adaptation KW - suppressor mutation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202170 VL - 4 IS - 3 ER - TY - JOUR A1 - Mottola, Austin A1 - Schwanfelder, Sonja A1 - Morschhäuser, Joachim T1 - Generation of Viable Candida albicans Mutants Lacking the "Essential" Protein Kinase Snf1 by Inducible Gene Deletion JF - mSphere N2 - The protein kinase Snf1, a member of the highly conserved AMP-activated protein kinase family, is a central regulator of metabolic adaptation. In the pathogenic yeast Candida albicans, Snf1 is considered to be essential, as previous attempts by different research groups to generate homozygous snf1 Delta mutants were unsuccessful. We aimed to elucidate why Snf1 is required for viability in C. albicans by generating snf1 Delta null mutants through forced, inducible gene deletion and observing the terminal phenotype before cell death. Unexpectedly, we found that snf1 Delta mutants were viable and could grow, albeit very slowly, on rich media containing the preferred carbon source glucose. Growth was improved when the cells were incubated at 37 degrees C instead of 30 degrees C, and this phenotype enabled us to isolate homozygous snf1 Delta mutants also by conventional, sequential deletion of both SNF1 alleles in a wild-type C. albicans strain. All snf1 Delta mutants could grow slowly on glucose but were unable to utilize alternative carbon sources. Our results show that, under optimal conditions, C. albicans can live and grow without Snf1. Furthermore, they demonstrate that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans. IMPORTANCE Essential genes are those that are indispensable for the viability and growth of an organism. Previous studies indicated that the protein kinase Snf1, a central regulator of metabolic adaptation, is essential in the pathogenic yeast Candida albicans, because no homozygous snf1 deletion mutants of C. albicans wild-type strains could be obtained by standard approaches. In order to investigate the lethal consequences of SNF1 deletion, we generated conditional mutants in which SNF1 could be deleted by forced, inducible excision from the genome. Unexpectedly, we found that snf1 null mutants were viable and could grow slowly under optimal conditions. The growth phenotypes of the snf1 Delta mutants explain why such mutants were not recovered in previous attempts. Our study demonstrates that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans. KW - Candida albicans KW - Snf1 KW - conditional mutants KW - essential genes KW - protein kinases Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230524 VL - 5 IS - 4 ER -