TY - JOUR A1 - Fischer, Dania A1 - Thies, Fabian A1 - Awad, Omar A1 - Brat, Camilla A1 - Meybohm, Patrick A1 - Baer, Patrick C. A1 - Müller, Markus M. A1 - Urbschat, Anja A1 - Maier, Thorsten J. A1 - Zacharowski, Kai A1 - Roos, Jessica T1 - Red blood cell-derived microparticles exert no cancer promoting effects on colorectal cancer cells in vitro JF - International Journal of Molecular Sciences N2 - The biomedical consequences of allogeneic blood transfusions and the possible pathomechanisms of transfusion-related morbidity and mortality are still not entirely understood. In retrospective studies, allogeneic transfusion was associated with increased rates of cancer recurrence, metastasis and death in patients with colorectal cancer. However, correlation does not imply causation. The purpose of this study was to elucidate this empirical observation further in order to address insecurity among patients and clinicians. We focused on the in vitro effect of microparticles derived from red blood cell units (RMPs). We incubated different colon carcinoma cells with RMPs and analyzed their effects on growth, invasion, migration and tumor marker expression. Furthermore, effects on Wnt, Akt and ERK signaling were explored. Our results show RMPs do not seem to affect functional and phenotypic characteristics of different colon carcinoma cells and did not induce or inhibit Wnt, Akt or ERK signaling, albeit in cell culture models lacking tumor microenvironment. Allogeneic blood transfusions are associated with poor prognosis, but RMPs do not seem to convey tumor-enhancing effects. Most likely, the circumstances that necessitate the transfusion, such as preoperative anemia, tumor stage, perioperative blood loss and extension of surgery, take center stage. KW - transfusion KW - red blood cells KW - microparticles KW - colorectal carcinoma Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286018 SN - 1422-0067 VL - 23 IS - 16 ER - TY - JOUR A1 - Brachner, Andreas A1 - Fragouli, Despina A1 - Duarte, Iola F. A1 - Farias, Patricia M. A. A1 - Dembski, Sofia A1 - Ghosh, Manosij A1 - Barisic, Ivan A1 - Zdzieblo, Daniela A1 - Vanoirbeek, Jeroen A1 - Schwabl, Philipp A1 - Neuhaus, Winfried T1 - Assessment of human health risks posed by nano-and microplastics is currently not feasible JF - International Journal of Environmental Research and Public Health N2 - The exposure of humans to nano-and microplastic particles (NMPs) is an issue recognized as a potential health hazard by scientists, authorities, politics, non-governmental organizations and the general public. The concentration of NMPs in the environment is increasing concomitantly with global plastic production and the usage of plastic materials. NMPs are detectable in numerous aquatic organisms and also in human samples, therefore necessitating a risk assessment of NMPs for human health. So far, a comprehensive risk assessment of NMPs is hampered by limited availability of appropriate reference materials, analytical obstacles and a lack of definitions and standardized study designs. Most studies conducted so far used polystyrene (PS) spheres as a matter of availability, although this polymer type accounts for only about 7% of total plastic production. Differently sized particles, different concentration and incubation times, and various biological models have been used, yielding hardly comparable data sets. Crucial physico-chemical properties of NMPs such as surface (charge, polarity, chemical reactivity), supplemented additives and adsorbed chemicals have been widely excluded from studies, although in particular the surface of NMPs determines the interaction with cellular membranes. In this manuscript we give an overview about the critical parameters which should be considered when performing risk assessments of NMPs, including novel reference materials, taking into account surface modifications (e.g., reflecting weathering processes), and the possible role of NMPs as a substrate and/or carrier for (pathogenic) microbes. Moreover, we make suggestions for biological model systems to evaluate immediate toxicity, long-term effects and the potential of NMPs to cross biological barriers. We are convinced that standardized reference materials and experimental parameters along with technical innovations in (nano)-particle sampling and analytics are a prerequisite for the successful realization of conclusive human health risk assessments of NMPs. KW - nanoplastics KW - nanoparticles KW - microplastics KW - microparticles KW - human exposure KW - biological barriers KW - biofilm KW - microbe carrier KW - toxicity KW - neurotoxicity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219423 SN - 1660-4601 VL - 17 IS - 23 ER -