TY - JOUR A1 - Reinhold, A. K. A1 - Batti, L. A1 - Bilbao, D. A1 - Buness, A. A1 - Rittner, H. L. A1 - Heppenstall, P. A. T1 - Differential Transcriptional Profiling of Damaged and Intact Adjacent Dorsal Root Ganglia Neurons in Neuropathic Pain JF - PLoS ONE N2 - Neuropathic pain, caused by a lesion in the somatosensory system, is a severely impairing mostly chronic disease. While its underlying molecular mechanisms are not thoroughly understood, neuroimmune interactions as well as changes in the pain pathway such as sensitization of nociceptors have been implicated. It has been shown that not only are different cell types involved in generation and maintenance of neuropathic pain, like neurons, immune and glial cells, but, also, intact adjacent neurons are relevant to the process. Here, we describe an experimental approach to discriminate damaged from intact adjacent neurons in the same dorsal root ganglion (DRG) using differential fluorescent neuronal labelling and fluorescence-activated cell sorting (FACS). Two fluorescent tracers, Fluoroemerald (FE) and 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI), were used, whose properties allow us to distinguish between damaged and intact neurons. Subsequent sorting permitted transcriptional analysis of both groups. Results and qPCR validation show a strong regulation in damaged neurons versus contralateral controls as well as a moderate regulation in adjacent neurons. Data for damaged neurons reveal an mRNA expression pattern consistent with established upregulated genes like galanin, which supports our approach. Moreover, novel genes were found strongly regulated such as corticotropinreleasing hormone (CRH), providing novel targets for further research. Differential fluorescent neuronal labelling and sorting allows for a clear distinction between primarily damaged neuropathic neurons and "bystanders," thereby facilitating a more detailed understanding of their respective roles in neuropathic processes in the DRG. KW - peripheral nerve injury KW - sensory neurons KW - rat KW - involvement KW - mechanisms KW - receptors KW - inhibition KW - expression KW - sciatic nerve KW - inflammatory pain Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143290 VL - 10 IS - 4 ER - TY - JOUR A1 - Baum, Petra A1 - Koj, Severin A1 - Klöting, Nora A1 - Blüher, Matthias A1 - Classen, Joseph A1 - Paeschke, Sabine A1 - Gericke, Martin A1 - Toyka, Klaus V. A1 - Nowicki, Marcin A1 - Kosacka, Joanna T1 - Treatment-induced neuropathy in diabetes (TIND) — Developing a disease model in type 1 diabetic rats JF - International Journal of Molecular Sciences N2 - Treatment-induced neuropathy in diabetes (TIND) is defined by the occurrence of an acute neuropathy within 8 weeks of an abrupt decrease in glycated hemoglobin-A1c (HbA1c). The underlying pathogenic mechanisms are still incompletely understood with only one mouse model being explored to date. The aim of this study was to further explore the hypothesis that an abrupt insulin-induced fall in HbA1c may be the prime causal factor of developing TIND. BB/OKL (bio breeding/OKL, Ottawa Karlsburg Leipzig) diabetic rats were randomized in three groups, receiving insulin treatment by implanted subcutaneous osmotic insulin pumps for 3 months, as follows: Group one received 2 units per day; group two 1 unit per day: and group three 1 unit per day in the first month, followed by 2 units per day in the last two months. We serially examined blood glucose and HbA1c levels, motor- and sensory/mixed afferent conduction velocities (mNCV and csNCV) and peripheral nerve morphology, including intraepidermal nerve fiber density and numbers of Iba-1 (ionized calcium binding adaptor molecule 1) positive macrophages in the sciatic nerve. Only in BB/OKL rats of group three, with a rapid decrease in HbA1c of more than 2%, did we find a significant decrease in mNCV in sciatic nerves (81% of initial values) after three months of treatment as compared to those group three rats with a less marked decrease in HbA1c <2% (mNCV 106% of initial values, p ≤ 0.01). A similar trend was observed for sensory/mixed afferent nerve conduction velocities: csNCV were reduced in BB/OKL rats with a rapid decrease in HbA1c >2% (csNCV 90% of initial values), compared to those rats with a mild decrease <2% (csNCV 112% of initial values, p ≤ 0.01). Moreover, BB/OKL rats of group three with a decrease in HbA1c >2% showed significantly greater infiltration of macrophages by about 50% (p ≤ 0.01) and a decreased amount of calcitonin gene related peptide (CGRP) positive nerve fibers as compared to the animals with a milder decrease in HbA1c. We conclude that a mild acute neuropathy with inflammatory components was induced in BB/OKL rats as a consequence of an abrupt decrease in HbA1c caused by high-dose insulin treatment. This experimentally induced neuropathy shares some features with TIND in humans and may be further explored in studies into the pathogenesis and treatment of TIND. KW - BB/OKL rats KW - peripheral neuropathy KW - sciatic nerve KW - TIND KW - Type 1 diabetes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285793 SN - 1422-0067 VL - 22 IS - 4 ER -