TY - JOUR A1 - Schulte, Annemarie A1 - Blum, Robert T1 - Shaped by leaky ER: Homeostatic Ca\(^{2+}\) fluxes JF - Frontiers in Physiology N2 - At any moment in time, cells coordinate and balance their calcium ion (Ca\(^{2+}\)) fluxes. The term ‘Ca\(^{2+}\) homeostasis’ suggests that balancing resting Ca2+ levels is a rather static process. However, direct ER Ca\(^{2+}\) imaging shows that resting Ca\(^{2+}\) levels are maintained by surprisingly dynamic Ca\(^{2+}\) fluxes between the ER Ca\(^{2+}\) store, the cytosol, and the extracellular space. The data show that the ER Ca\(^{2+}\) leak, continuously fed by the high-energy consuming SERCA, is a fundamental driver of resting Ca\(^{2+}\) dynamics. Based on simplistic Ca\(^{2+}\) toolkit models, we discuss how the ER Ca\(^{2+}\) leak could contribute to evolutionarily conserved Ca\(^{2+}\) phenomena such as Ca\(^{2+}\) entry, ER Ca\(^{2+}\) release, and Ca\(^{2+}\) oscillations. KW - Ca2+ homeostasis KW - Ca2+ ion analysis KW - ER Ca2+ store KW - ER Ca2+ imaging KW - SERCA KW - store-operated Ca2+ entry KW - Ca2+ leak KW - Ca2+ oscillation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287102 SN - 1664-042X VL - 13 ER -