TY - JOUR A1 - Ilin, Alexander A1 - Kulmanov, Murat A1 - Nersesyan, Armen A1 - Stopper, Helga T1 - Genotoxic activity of the new pharmaceutical FS-1 in Salmonella/microsome test and mouse lymphoma L5178Y cells JF - Journal of BUON N2 - Purpose: The purpose of this study was to determine possible genotoxic effects of a new very promising antibacterial/ antiviral drug FS-1. Methods: The drug was tested in TA98, TA100, TA102, TA 1535 and TA1537 strains of Salmonella (Ames test) with and without metabolic activation, and also in mouse lymphoma L5178Y cells by means of micronucleus and comet assays. In microbes the drug was tested at concentrations up to 500 \(\mu\)g/plate and in mouse lymphoma cells up to 2,000 \(\mu\)g/ml. Results: In both test-systems in all experiments completely negative results were obtained although FS-1 was tested at maximum tolerated doses. Conclusions: The drug is not genotoxic. This is advantageous because many antibacterial/antiviral drugs possess such activity. KW - mutagenicity KW - antibacterial/antiviral drug KW - comet assay KW - mouse lymphoma L5178Y KW - Salmonella/microsome assay KW - micronucleus test Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143769 VL - 20 IS - 2 ER - TY - JOUR A1 - Däniken, A. von A1 - Friederich, U. A1 - Lutz, Werner K. A1 - Schlatter, C. T1 - Tests for mutagenicity in Salmonella and covalent binding to DNA and protein in the rat of the riot control agent o-chlorobenzylidene malononitrile (CS) N2 - The aim of this study was to determine whether o-chlorobenzylidene malononitrile ( CS) exhibits any genotoxic activity towards Salmonella or mammalian DNA in vivo. CS was synthesized with a [\(^{14}\)C]-label at the benzylic carbon atom. It was administered i. p. at a dose level of 13 mg/kg (1 mCi/kg) to young adult male rats. Liverand kidney DNA was isolated after 8, 25, and 75 h. The radioactivity was at (liver, 8 and 75 h) or below (all other samples) the limit of detection of 3 dpm. Therefore, a possible binding of CS to DNA is at least 10\(^5\) times lower than that of the strong hepatocarcinogen aflatoxin B1, and 4,000 times lower than that of vinyl chloride. In contrast to this lack of DNA binding, but in agreement with the chemical reactivity of CS, a binding to nuclear proteins could be detected with specific activities ranging between 50 and 121 dpm/mg for liver and between 3 and 41 dpm/mg for kidney. Protein binding could well be responsible for its pronounced cytotoxic effects. Cs was also tested in the Ames Salmonella/microsome assay. Strains TA 1535, TA 1537, TA 1538, TA 98, and TA 100 were used with or without pre-incubation. Only with strain TA 100 and only without pre-incubation, a doubling of the number of revertants was detectable at the highest dose Ievels used, 1,000 and 2,000 !lg CS per plate. With pre-incubation of TA 100 with CS, a slight increase of the number of revertants was seen at 100 and 500 !lg per plate, and a subsequent fall below control values at 1,000 J.tg. A check for the number of surviving bacteria revealed a strong bacteriotoxicity of the higher doses of es so that the calculated mutation frequencies, i.e., the oumber of revertants per number of surviving bacteria, increased with doses up to 500 !J.g. This toxicity could be counteracted in part by the addition of increasing amounts of rat liver microsomes. In the view of these results, and taking into account the rare and low exposure of man, it is concluded that CS will not create a risk for the induction of point mutations or of carcinogenic processes mediated by DNA binding. KW - Toxikologie KW - o-Chlorobenzylidene malononitrile KW - Riot control agents KW - DNA Binding KW - Salmonella/microsome assay KW - Carcinogens KW - Mutagens Y1 - 1981 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61073 ER -