TY - JOUR A1 - Scholz, Nicole A1 - Gehring, Jennifer A1 - Guan, Chonglin A1 - Ljaschenko, Dmitrij A1 - Fischer, Robin A1 - Lakshmanan, Vetrivel A1 - Kittel, Robert J. A1 - Langenhan, Tobias T1 - The adhesion GPCR Latrophilin/CIRL shapes mechanosensation JF - Cell Reports N2 - G-protein-coupled receptors (GPCRs) are typically regarded as chemosensors that control cellular states in response to soluble extracellular cues. However, the modality of stimuli recognized through adhesion GPCR (aGPCR), the second largest class of the GPCR superfamily, is unresolved. Our study characterizes the Drosophila aGPCR Latrophilin/dCirl, a prototype member of this enigmatic receptor class. We show that dCirl shapes the perception of tactile, proprioceptive, and auditory stimuli through chordotonal neurons, the principal mechanosensors of Drosophila. dCirl sensitizes these neurons for the detection of mechanical stimulation by amplifying their input-output function. Our results indicate that aGPCR may generally process and modulate the perception of mechanical signals, linking these important stimuli to the sensory canon of the GPCR superfamily. KW - \(\alpha\)-latrotoxin KW - chordotonal organs KW - Johnstons organ KW - ligand CD55 KW - hearing KW - binding KW - shear stress KW - protein-coupled receptors KW - drosophila larvae KW - domain Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148626 VL - 11 ER - TY - JOUR A1 - Juergens, Lukas A1 - Bieniussa, Linda A1 - Voelker, Johannes A1 - Hagen, Rudolf A1 - Rak, Kristen T1 - Spatio-temporal distribution of tubulin-binding cofactors and posttranslational modifications of tubulin in the cochlea of mice JF - Histochemistry and Cell Biology N2 - The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the formation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing. KW - tubulin-binding cofactors KW - tubulin KW - development KW - cochlea KW - posttranslational modifications KW - hearing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234852 SN - 0948-6143 VL - 154 ER -