TY - JOUR A1 - Rivero, O A1 - Selten, MM A1 - Sich, S A1 - Popp, S A1 - Bacmeister, L A1 - Amendola, E A1 - Negwer, M A1 - Schubert, D A1 - Proft, F A1 - Kiser, D A1 - Schmitt, AG A1 - Gross, C A1 - Kolk, SM A1 - Strekalova, T A1 - van den Hove, D A1 - Resink, TJ A1 - Kasir, N Nadif A1 - Lesch, KP T1 - Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition JF - Translational Psychiatry N2 - Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo) phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13\(^{-/-}\) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13\(^{-/-}\) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism. KW - genome-wide association KW - deficit hyperactivity disorder KW - psychiatric disorders KW - neurodevelopmental disorders KW - synaptic plasticity KW - response inhibition KW - positive interneurons KW - T-cadherin KW - long-term potentiation KW - attention deficit/hyperactivity disorder Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145218 VL - 5 IS - e655 ER - TY - JOUR A1 - Falibene, Augustina A1 - Roces, Flavio A1 - Rössler, Wolfgang T1 - Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants JF - Frontiers in Behavioural Neuroscience N2 - Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MB) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning when ants still showed plant avoidance MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. KW - Acromyrmex ambiguus KW - leaf-cutting ants KW - avoidance learning KW - olfaction KW - honeybee KW - microglomeruli KW - mushroom body KW - synaptic plasticity Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148763 VL - 9 IS - 84 ER - TY - JOUR A1 - Falibene, Agustina A1 - Roces, Flavio A1 - Rössler, Wolfgang T1 - Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants JF - Frontiers in Behavioral Neuroscience N2 - Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still showed plant avoidance—MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. KW - microglomeruli KW - olfaction KW - avoidance learning KW - leaf-cutting ants KW - acromyrmex ambiguus KW - synaptic plasticity KW - mushroom body Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125522 VL - 9 IS - 84 ER -