TY - JOUR A1 - Yan, Yan A1 - Hong, Ni A1 - Chen, Tiansheng A1 - Li, Mingyou A1 - Wang, Tiansu A1 - Guan, Guijun A1 - Qiao, Yongkang A1 - Chen, Songlin A1 - Schartl, Manfred A1 - Li, Chang-Ming A1 - Hong, Yunhan T1 - p53 Gene Targeting by Homologous Recombination in Fish ES Cells JF - PLoS One N2 - Background: Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) events in the fish medaka (Oryzias latipes). Methodology and Principal Findings: Here we report HR-mediated GT in this organism. We designed a GT vector to disrupt the tumor suppressor gene p53 (also known as tp53). We show that all the three medaka ES cell lines, MES1 similar to MES3, are highly proficient for HR, as they produced detectable HR without drug selection. Furthermore, the positive-negative selection (PNS) procedure enhanced HR by similar to 12 folds. Out of 39 PNS-resistant colonies analyzed, 19 (48.7%) were positive for GT by PCR genotyping. When 11 of the PCR-positive colonies were further analyzed, 6 (54.5%) were found to be bona fide homologous recombinants by Southern blot analysis, sequencing and fluorescent in situ hybridization. This produces a high efficiency of up to 26.6% for p53 GT under PNS conditions. We show that p53 disruption and long-term propagation under drug selection conditions do not compromise the pluripotency, as p53-targeted ES cells retained stable growth, undifferentiated phenotype, pluripotency gene expression profile and differentiation potential in vitro and in vivo. Conclusions: Our results demonstrate that medaka ES cells are proficient for HR-mediated GT, offering a first model organism of lower vertebrates towards the development of full ES cell-based GT technology. KW - mouse KW - in-vitro KW - drug selection KW - chimera formation KW - medakafish oryzias latipes KW - embryonic stem-cells KW - zebrafish KW - differentiation KW - cultures KW - pluripotency Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133416 VL - 8 IS - 3 ER - TY - JOUR A1 - Anelli, Viviana A1 - Ordas, Anita A1 - Kneitz, Susanne A1 - Sagredo, Leonel Munoz A1 - Gourain, Victor A1 - Schartl, Manfred A1 - Meijer, Annemarie H. A1 - Mione, Marina T1 - Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression JF - Frontiers in Genetics N2 - Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc&acc=GSE37015. KW - zebrafish KW - cancer models KW - microRNA KW - Jmjd6 KW - ras KW - melanoma KW - miR-146a KW - miR-193a Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196963 SN - 1664-8021 VL - 9 IS - 675 ER -