TY - THES A1 - Sauer, Susanne T1 - Implementation and Application of QM/MM Hybrid Methods T1 - Implementierung und Anwendung von QM/MM-Hybridmethoden N2 - Within this work, an additive and a subtractive QM/MM interface were implemented into CAST. The interactions between QM and MM system are described via electrostatic embedding. Link atoms are used to saturate dangling bonds originating from the separation of QM and MM system. Available energy evaluation methods to be combined include force fields (OPLSAA and AMBER), semi-empirical programs (Mopac and DFTB+), and quantum-chemical methods (from Gaussian, Orca, and Psi4). Both the additive and the subtractive interface can deal with periodic boundary conditions. The subtractive scheme was extended to enable QM/QM, three-layer, and multi-center calculations. Another feature only available within the subtractive interface is the microiteration procedure for local optimizations. The novel QM/MM methods were applied to the investigation of the reaction path for the complex formation between rhodesain and K11777. Benchmark calculations show a very good agreement with results from Gaussian-ONIOM. When comparing the relative energies obtained with different options to a computation where the whole system was treated with the “QM method” DFTB3, the electrostatic embedding scheme with option “delM3” gives the best results. “delM3” means that atoms with up to three bonds distance to the QM region are ignored when creating the external charges. This is done in order to avoid a double counting of Coulomb interactions between QM and MM system. The embedding scheme for the inner system in a three-layer calculation, however, does not have a significant influence on the energies. The same is true for the choice of the coupling scheme: Whether the additive or the subtractive QM/MM interface is applied does not alter the results significantly. The choice of the QM region, though, proved to be an important factor. As can be seen from the comparison of two QM systems of different size, bigger is not always better here. Instead, one has to make sure not to separate important (polar) interactions by the QM/MM border. After this benchmark study with singlepoint calculations, the various possibilities of CAST were used to approximate the solution of a remaining problem: The predicted reaction energy for the formation of the rhodesain-K11777 complex differs significantly depending on the starting point of the reaction path. The reason for this is assumed to be an inadequate adjustment of the environment during the scans, which leads to a better stabilization of the starting structure in comparison to the final structure. The first approach to improve this adjustment was performing the relaxed scan with a bigger QM region instead of the minimal QM system used before. While the paths starting from the covalent complex do not change significantly, those starting from the non-covalent complex become more exothermic, leading to a higher similarity of the two paths. Nevertheless, the difference of the reaction energy is still around 15 kcal/mol, which is far from a perfect agreement. For this reason, Umbrella Samplings were run. Here, the adjustment of the environment is not done by local optimizations like in the scans, but by MD simulations. This has the advantage that the system can cross barriers and reach different local minima. The relative free energies obtained by Umbrella Samplings with suitable QM regions are nearly identical, independently of the starting point of the calculation. Thus, \(\Delta A\) evaluated by these computations can be assumed to reproduce the real energy change best. An MD simulation that was started from the transition state in order to mimic a “real-time” reaction indicates a very fast adjustment of the environment during the formation of the complex. This confirms that Umbrella Sampling is probably better suitable to describe the reaction path than a scan, where the environment can never move strong enough to leave the current local minimum. N2 - In dieser Arbeit wurden ein additives und ein subtraktives QM/MM-Interface in CAST implementiert. Die Wechselwirkungen zwischen QM- und MM-System werden durch elektrostatische Einbettung beschrieben. Link-Atome dienen dazu, lose Bindungen abzusättigen, die durch die Trennung von QM- und MM-System entstehen. Als Methoden zur Energieberechnung, die kombiniert werden können, stehen Kraftfelder (OPLSAA und AM- BER), semiempirische Programme (Mopac und DFTB+) und quantenchemische Verfahren (aus Gaussian, Orca und Psi4) zur Verfügung. Sowohl das additive als auch das subtraktive Interface können mit periodischen Randbedingungen verwendet werden. Erweiterungen des subtraktiven Schemas ermöglichen Berechnungen mit QM/QM, drei Schichten o der mehreren QM-Zentren. Ebenfalls nur im subtraktiven Interface verfügbar ist die lokale Optimierung mittels Mikroiterationsschema. ... KW - Quantenmechanik KW - Molekularmechanik KW - QM/MM KW - Umbrella Sampling KW - Computational Chemistry KW - Theoretical Chemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243213 ER - TY - THES A1 - Musch, Patrick T1 - Large-Scale Applications of Multi-Reference Methods in Chemistry and Development of a Multi-Reference Moller-Plesset Perturbation Theory Program T1 - Anwendung von Multireferenz-Methoden in der Chemie und Entwicklung eines Multireferenz Moller-Plesset-Störungstheorie-Programmes N2 - The first part of this work focuses on the characterization of systems which complex electronic structures require the application of multi-reference methods. The anti-tumor efficacy of the natural product Neocarzinostatin is based on the formation of diradicals and causes DNA cleavage and finally cytolysis. Computations on model systems performed in the present work show the influence of structural features on the mode of action and the efficacy of this antitumor-antibiotic. The cyclization of systems related to the enyne-cumulene framework like the enyne-allenes was investigated earlier and relations to the more unusual class of enyne-ketenes are analyzed. The class of enyne-ketenes (and also the enyne-allenes) show a broad spectrum of possible intermediates (diradicals, zwitterions, allenes). The electronic structures of these intermediates are also possible for the (heteroatom substituted) 1,2,4-cyclohexatriene and a model for their energetic sequence based on high-level multi-reference computations is proposed. In all three projects the application of multi-reference approaches is necessary to obtain a comprehensive picture of the reactivity and electronic structure but also shows up the limits inherently existing in the currently available programs with respect to the size of the molecules. In the second part, algorithms for a multi-reference Moller-Plesset perturbation theory (MR-MP2) program, designed to perform large-scale computations, were developed and implemented. The MR-MP2 approach represents the most cost-effective multireference ansatz and requires an efficient evaluation of the Hamilton matrix for which an algorithm is designed to instantly recognize only non-vanishing matrix elements and to employ the recurring interaction patterns of the Hamilton matrix. The direct construction of the Hamilton matrix is additionally parallelized to work on cluster environments. N2 - Der erste Teil der vorliegenden Arbeit beschäftigt sich mit der Charakterisierung von Systemen, deren komplexe elektronische Struktur die Anwendung von Multireferenz-Methoden erfordert. Die Antitumor-Wirkung des Naturstoffes Neocarzinostatin beruht auf der Bildung von Diradikalen und führt zur Spaltung der DNS und löst den Zelltod aus. Berechnungen an Modellsystemen zeigen den Einfluss der Strukturmotive auf die Wirkungsweise und die Wirksamkeit des Antitumor-Antibiotikums. Die Cyclisierung von Systemen, wie die Eninallene, die dem Enincumulen-Grundgerüst des aktivierten Neocarzinostatin-Chromophors verwandt sind, wurden schon in früheren Arbeiten untersucht und die Verwandtschaft zur ungewöhnlicheren Substanzklasse der Eninketene wird in dieser Arbeit analysiert. Diese Verbindungsklasse und die der Eninallene zeigen ein breites Spektrum an möglichen Intermediaten, wie Diradikale, Carbene, Zwitterionen und Allene, deren elektronische Strukturen auch bei (heterosubstituierten) 1,2,4 Cyclohexatrienen auftreten. Für diese Verbindungen wird ein Modell für die energetische Abfolge der elektronischen Strukturen auf Basis von hochwertigen Multireferenz-Rechnungen vorgeschlagen. In den drei aufgeführten Projekten ist die Anwendung von Multireferenz-Ansätzen notwendig um ein umfassendes Bild der Reaktivitäten und elektronischen Strukturen zu erhalten, zeigen im Hinblick auf große Moleküle aber auch die inhärenten Grenzen in den zur Zeit verfügbaren Programme auf. Im zweiten Teil der Arbeit wurden Algorithmen für ein Multireferenz-Moller-Plesset-Störungstheorie-Programmes (MR-MP2) entwickelt und implementiert. Der MR-MP2-Ansatz stellt den effizientesten Multireferenz-Ansatz dar und setzt eine geschickte und schnelle Berechnung der Hamilton-Matrix voraus. Hierfür ist ein Algorithmus konzipiert worden, der zum einen verschwindende Matrixelemente sofort erkennt und die sich wiederholenden Muster innerhalb der Hamilton-Matrix zu Nutze macht. Die Konstruktion der Hamilton-Matrix für das direkte Verfahren ist zudem für Clusterumgebungen parallelisiert. KW - Theoretische Chemie KW - Organische Chemie KW - Multireferenz KW - Moller-Plesset KW - Antitumor-Antibiotikum KW - Theoretical Chemistry KW - Organic Chemistry KW - Multi Reference KW - Moller-Plesset KW - Antitumor-antibitioc Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7741 ER - TY - THES A1 - Issler, Kevin T1 - Theory and simulation of ultrafast autodetachment dynamics and nonradiative relaxation in molecules T1 - Theorie und Simulation der ultraschnellen Autodetachment-Dynamik und nicht-radiativen Relaxation in Molekülen N2 - In this thesis, theoretical approaches for the simulation of electron detachment processes in molecules following vibrational or electronic excitation are developed and applied. These approaches are based on the quantum-classical surface-hopping methodology, in which nuclear motion is treated classically as an ensemble of trajectories in the potential of quantum-mechanically described electronic degrees of freedom. N2 - Im Rahmen dieser Arbeit werden theoretische Verfahren zur Simulation von molekularen Ionisierungsprozessen nach elektronischer oder Schwingungsanregung entwickelt und angewendet. Diese Verfahren basieren auf der quanten-klassischen Surface-Hopping-Methode, in welcher die Kernbewegung durch ein Ensemble klassischer Trajektorien im Potenzial quantenmechanisch beschriebener Elektronen behandelt wird. KW - Theoretische Chemie KW - Autodetachment KW - Nonadiabatic Dynamics KW - Theoretical Chemistry KW - Computational Chemistry KW - Relaxation KW - Molekül Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-352232 ER - TY - THES A1 - Hoche, Joscha T1 - The life of an exciton: From ultrafast nonradiative relaxation to high quantum yield fluorescence T1 - Das Leben eines Exzitons: Von ultraschneller nicht-radiativer Relaxation zu Fluoreszenz mit hoher Quantenausbeute N2 - This thesis focuses on understanding and predicting processes in chromophores after electronic state excitation, particularly the impact on luminescence - the spontaneous emission of light. It considers the effect of processes preceding luminescence on emission properties, which are challenging to predict, especially in complex aggregates. For example, excitation energy transfer is a crucial process in understanding luminescence, as it allows the emission to occur from different molecular units than where the absorption occurs. This can lead to significant shifts in emission wavelength and fluorescence quantum yields. The thesis offers solutions to model this process effectively, understanding the impact of excitation energy and exciton coupling disorder on energy transfer rates and linking simulated energy transfer to experimental measurements. The work further explores excimer formation - an undesired luminescence loss channel due to its significant stabilization of the electronic state. Usually, the molecules obey a stacked conformation with parallel orientation to maximize the orbital overlap. This energetic lowering of the excited state can often result in trapping of the dimer in this state due to a deep minimum on the potential energy surface. The excimer formation dynamics, structural rearrangement, and its influence on singlet-correlated triplet pair states formation, critical for the singlet-fission process, have been extensively studied. The thesis also focuses on another luminescence loss channel triggered by conical intersections between the electronic ground and the first excited states. A new model is introduced to overcome limitations in current simulation methods, considering the solvent's electrostatic and frictional effects on the barriers. The model accurately describes merocyanine dyes' solvent-dependent photoluminescence quantum yields and characterizes all relaxation channels in different BODIPY oligomer series. N2 - Im Rahmen dieser Dissertation wurden neue Ansätze und Methoden für die Simulation und Untersuchung von optischen Eigenschaften organischer Chromophore und deren supramolekularer Aggregate entwickelt. Die Motivation lag dabei darin umfassend zu verstehen, welche Prozesse nach der Anregung eines molekularen Systems stattfinden und dessen Emissionseigenschaften beeinflussen. Dabei wurde nicht nur die ultraschnelle Dynamik der elektronischen und geometrischen Relaxation innerhalb von Femto- oder Pikosekunden berücksichtigt sondern auch die radiativen und nicht-radiativen Prozesse auf der Nano- bis Mikrosekunden-Zeitskala. Die gewonnenen Erkenntnisse lassen sich anhand dieser Prozesse und Zeitskalen in die folgenden drei Bereiche gruppieren: (A) Ultraschnelle Energietransfer- und Exzitonlokalisierungdynamik • Bei Chromophoren, die sich in einem schwachen exzitonischen Kopplungsregime befinden, konnte gezeigt werden, dass die interne Konversion von höher angeregten elektronischen Zuständen zum ersten angeregten Singulettzustand durch einen Energietransferprozess begleitet wird. Im Fall der Squarain-Triaden war es möglich, durch Simulationen die Exzitonendynamik über mehrere Untereinheiten aufzudecken. Hierbei gelang es zu zeigen, dass es während der Dynamik zu transienten Lokalisierungen und Delokalisierungen der Anregungen kommt, bis sich das Exziton in allen untersuchten Systemen innerhalb von wenigen hundert Femtosekunden auf einer der Untereinheiten lokalisiert. • Für die zwei verschiedenen BODIPY-Serien, die sich nur durch eine Ethylgruppe unterscheiden, gelang es die deutlichen Unterschiede in der Energietransferdynamik durch die Simulationen eindeutig aufzuklären. Obwohl die Absorptions- und Emissionseigenschaften beider Serien keine wesentlichen Unterschiede aufwiesen, sah man in der —-ethyl verbrückten Serie einen 35 % schnelleren Energietransfer von grünen zu roten BODIPY-Einheiten. Durch Kombination von lichtinduzierten Dynamiksimulationen mit neu entwickelten Analysemethoden gelang es, die Anregungsenergie- und Exzitonkopplungsunordnung direkt vorherzusagen. Am Beispiel der BODIPY-Serien konnte so gezeigt werden, dass die Ethylgruppe zu einer signifikanten Reduzierung dieser Unordnungen führt. Dies führt zu kleineren internen Konversionraten und verlangsamt auf diese Weise den Energietransfer. • Die zeitaufgelöste Polarisationsanisotropie-Spektroskopie (auch Fluoreszenzanisotropie-Spektroskopie genannt) ermöglicht es, die Änderung des Übergangsdipolmoments von populierten angeregten Zuständen zeitlich zu verfolgen. Hier konnte aufbauend auf lichtinduzierten Dynamiksimulationen eine Methode entwickelt werden, die die Simulation von zeitaufgelösten Polarisationsanisotropie-Spektren ermöglicht. Am Beispiel der BODIPY-Pyren-Dyade und -Triade konnten diese Spektren erfolgreich simuliert werden und dies ermöglichte es, die verschiedenen Phasen des Energietransfers präzise abzubilden. Damit bildet diese Methode für die Zukunft eine wichtige Brücke zwischen experimentellen Polarisationsanisotropie-Messungen und der theoretischen Nachverfolgung der Energietransferdynamik. B) Exzimerbildung und deren Wechselwirkung mit triplett-korrelierten Singulettzuständen (1 TT) • Da die Exzimerbildung eine wichtige Rolle als Verlustkanal bei der Emission spielt, wurde am Beispiel des Tetracen-Dimers die Dynamik dieses Prozesses simuliert. Hierbei konnte zunächst gezeigt werden, dass semi-empirische Quantenchemiemethoden eine gute Übereinstimmung mit DFT-MRCI bei der Berechnung von Potentialenergieflächen der elektronischen Zustände zeigen. Dies ermöglichte es, erstmals nicht-adiabatische Dynamik für 20 Pikosekunden in diesem System zu simulieren. Die Exzimerbildung fand hierbei in etwa 5-6 ps statt und die Hälfte der untersuchten Dimere bildete ein Exzimer. Zusätzlich war es möglich durch Diabatisierung der populierten einfach- und doppelangeregten Zustände den Charakter nach lokal-angeregten (LE), Ladungstransfer-(CT) und triplett-korrelierten Singulettzuständen (1 TT) zu klassifizieren. Auf diese Weise konnten diabatische zeitabhängige Zustandspopulationen berechnet und die Beteiligung des ( 1 TT)-Zustands an der Exzimerbildung aufgeklärt werden. Während der Exzimerbildungsdynamik konnte so eine transiente Besetzung des ( 1 TT)-Zustands für etwa 2-3 ps beobachtet werden. Allerdings wurde nach etwa 5 ps der Zustand wieder vollständig depopuliert. Gleichzeitig konnte beobachtet werden, dass starke Schwingungsanregungen der Moleküle eine wesentliche Rolle in der Exzimerbildung spielen. (C) Simulation von Photolumineszenz-Quantene Aufbauend auf Englmans & Jortners Energy-Gap-Law und der Kramers’schen Ratentheorie wurde ein neues Modell entwickelt, um interne Konversionsraten vorherzusagen. Mit diesem Modell können sowohl Polaritäts- und Viskositätseffekte des Lösungsmittels als auch die Relaxation über konische Durchschneidungen berücksichtigt werden. Hiermit war es möglich, die Relaxationsprozesse eines Merocyanin-Farbstoffs in unterschiedlichen Lösungsmitteln vollständig aufzuklären und die Raten quantitativ zu simulieren. In Kombination mit transienter Absorptionsspektroskopie konnte zudem die Photoisomerisierung verstanden werden und temperaturabhängige PLQE-Messungen konnten zeigen, dass das entwickelte Modell auch die Temperaturabhängigkeit der Relaxationsraten richtig vorhersagt. Auf Basis des zuvor entwickelten Modells wurden in einer großen Serie von BODIPY-Oligomeren, mit insgesamt mehr als 25 verschiedenen molekularen Systemen, die Relaxationsprozesse untersucht. Dafür wurden hierbei auch die Intersystem-Crossing-Übergänge und der reduktive Photoelektronentransfer berücksichtigt und es gelang für alle acht verschiedenen Grundeinheiten den dominanten Relaxationskanal aufzuklären. Jedoch wurden nicht nur die dominanten Kanäle identifiziert, sondern auch die Skalierungsrelation der Raten in Abhän nigkeit der Zahl der Monomereinheiten. Dabei wächst die radiative und die intersystem Crossing Rate mit der Zahl der Monomere an. Die Rate für die Relaxation über eine konische Durchschneidung hingegen ist nahezu konstant. Der Teil der internen Konversionrate, der sich in harmonischer Näherung beschreiben lässt, zeigt wiederum einen starken Abfall mit zunehmender Anzahl an Monomeren. Dies ist insbesondere bei J-Aggregaten nicht offensichtlich, da eine Erhöhung der Rate durch die Absenkung der Anregungsenergie erwartbar wäre. Jedoch führt die Oligomerisierung zu einer Abnahme der Huang-Rhys Faktoren, die hierbei stark überwiegt. Diese Ergebnisse haben experimentelle Untersuchungen angestoßen, in denen durch gezielte Oligomerisierung die PLQE von 7 % auf über 80 % erhöht werden konnte. Insgesamt wurden in dieser Dissertation neue Ansätze und Methoden für die Simulation von optischen Eigenschaften in organischen Systemen eingeführt und angewandt. Die hier vorgestellten Ergebnisse zeigen, dass es mit diesen Methoden zum einen möglich ist die ultraschnelle Relaxationsdynamik nach der Anregung zu beschreiben. Hierbei konnte sowohl die Exzitonendynamik und der Energietransfer zwischen Chromophoreinheiten als auch die Exzimerbildung explizit simuliert werden. Zum anderen gelang es die radiativen und nicht-radiativen Prozesse in verschiedenen Fluorophoren zu identifizieren und deren Raten quantitativ zu beschreiben. Damit stellen diese Ergebnisse eine wichtige Grundlage für die Entwicklung neuer Materialien für die organische Elektronik, wie zum Beispiel organische Leuchtdioden, Photovoltaik oder tragbare Technologien, dar. KW - Theoretische Chemie KW - Computational Chemistry KW - Theoretical Chemistry KW - nonradiative Relaxation KW - nonadiabatic Dynamics KW - Conical Intersections Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-316844 ER - TY - THES A1 - Albert, Julian T1 - Quantum Studies on Low-Dimensional Coupled Electron-Nuclear Dynamics T1 - Quantentheoretische Untersuchungen niederdimensionaler gekoppelter Elektronen-Kern-Dynamik N2 - In the context of quantum mechanical calculations, the properties of non-adiabatic coupling in a small system, the Shin-Metiu model, is investigated. The transition from adiabatic to non-adiabatic dynamics is elucidated in modifying the electron-nuclear interaction. This allows the comparison of weakly correlated electron-nuclear motion with the case where the strong correlations determine the dynamics. The studies of the model are extended to include spectroscopical transitions being present in two-dimensional and degenerate four-wave mixing spectroscopy. Furthermore, the quantum and classical time-evolution of the coupled motion in the complete electron-nuclear phase space is compared for the two coupling cases. Additionally, the numerically exact electron flux within the weak coupling case is compared to the Born-Oppenheimer treatment. In the last part of the thesis, the model is extended to two dimensions. The system then possesses potential energy surfaces which exhibit a typical 'Mexican hat'-like structure and a conical intersection in the adiabatic representation. Thus, it is possible to map properties of the system onto a vibronic coupling (Jahn-Teller) hamiltonian. Exact wave-packet propagations as well as nuclear wave-packet dynamics in the adiabatic and diabatic representation are performed. N2 - Im Rahmen quantenmechanischer Rechnungen werden die Eigenschaften nicht-adiabatischer Kopplungen in einem kleinen Modellsystem, dem Shin-Metiu Modell, untersucht. Die Fallunterscheidung zwischen adiabatischen und nicht-adiabatischen Prozessen wird durch eine Parameterisierung der Elektronen-Kernwechselwirkung realisiert. Dies ermöglicht den Vergleich zwischen korrelierter und unkorrelierter Elektronen-Kernbewegung. Innerhalb dieser zwei Extrema werden die Eigenfunktionen betrachtet und der Einfluss nicht-adiabtischer Kopplungen auf diese analysiert. Es wird gezeigt, dass im Fall einer schwachen Kopplung die Eigenfunktionen als adiabatisches Produkt dargestellt werden können, soweit die adiabatischen elektronischen Eigenfunktionen voneinander entkoppelt sind und unterschiedlichen elektronischen Charakter besitzen. Auf der anderen Seite sind die adiabatischen elektronischen Eigenfunktionen und die Vibrationseigenfunktionen im Bereich einer starken Kopplung miteinander gekoppelt, und es zeigt sich, dass die Eigenfunktionen in der diabatischen Darstellung eine zur adiabatischen äquivalente, aber intuitivere Beschreibung darstellen. Anhand dieser Ergebnisse wird eine Diabatisierung und ein Vergleich zwischen exakter Elektronen-Kernpropagation und der Propagation im diabatischen Bild durchgeführt. Dieser Vergleich ist in sehr guter Übereinstimmung und zeigt, dass der Ansatz der Diabatisierung für unkorrelierte Elektronen-Kernbewegungen hinreichend ist und gleichzeitig klassifiziert er die Wellepacket-dynamik im Bereich starker Kopplungen als diabatisch. Die theoretischen Untersuchungen des eindimensionalen Modells werden auf spektroskopische Übergänge erweitert, welche lineare und nichtlineare System-Feld Wechselwirkungen beinhalten. Ein Vergleich zwischen zweidimensionalen Spektren bezüglich schwach und stark gekoppelter Elektronen-Kern Dynamik zeigt, dass im Fall schwacher Kopplungen, die Spektren durch analoge Rechnungen im Rahmen der Born-Oppenheimer Näherung reproduzierbar sind. Es zeigt sich, dass diejenigen Teile des Spektrums, welche auf gleiche Weise nicht reproduzierbar sind, elektronisch gemischten Zuständen, aufgrund starker nicht-adiabtischer Kopplungen, zuzuordnen sind. Die Möglichkeit, das System zwischen schwacher und starker Kopplung zu variieren, erlaubt es Vibrationskohärenzen und elektronischen Kohärenzen in zweidimensionalen Spektren zu analysieren. Dazu werden die zweidimensionalen Spektren als Funktion der Populationszeit betrachtet. Es ergibt sich, dass im Fall schwacher Kopplungen die Kohärenzen während der Populationszeit Vibrationskohärenzen zugeordnet werden können. Im Gegensatz dazu ergeben sich im Bereich starker Kopplungen, aufgrund des gemischten elektronischen Charakters der Zustände, Kohärenzen vibronischer Art. Als weitere Methode wird die Degenerierte-Vier-Wellen-Mischen Spektroskopie (FWM) untersucht. Diese ist in der Lage Grundzustandsdynamiken und Dynamiken im angeregten Zustand separat zu verfolgen. Sowohl für negative als auch für positive Verzögerungszeiten werden die zwei verschiedenen Kopplungsszenarien untersucht und der Zusammenbruch dieser Methode bezüglich der nicht möglichen Trennung der Grundzustandsdynamik und Dynamik im angeregten Zustand innerhalb der adiabatischen Beschreibung betrachtet. Als weiterer Aspekt, wird die quantenmechanische und klassische Zeitentwicklung der gekoppelten Elektronen-Kernbewegung im vollständigen Phasenraum für verschiedene Kopplungsstärken verglichen. Im Fall schwacher Kopplung stimmt im Kurzzeitverhalten die klassische Berechung mit der quantenmechanischen gut überein. Dies kann auch im Fall starker Kopplungen gezeigt werden, was die weitere Schlussfolgerung zulässt, dass die Dynamik im Bereich starker Kopplungen hauptsächlich in einem diabatischen Zustand stattfindet. Das zeigt, dass die klassische Bewegung sehr ähnlich zu der diabatischen quantenmechanischen Bewegung verläuft. Als Konsequenz reproduziert eine klassische Bewegung im vollständigen Phasenraum eine quantenmechanische, bei der nicht-adiabatische Kopplungen stark involviert sind. Als letzte Betrachtung des eindimensionalen Shin-Metiu Modells, wird der Elektronenfluss im schwach gekoppelten Fall untersucht und der numerisch exakt berechnete Fluss mit dem in der Born-Oppenheimer Näherung verglichen. Innerhalb der üblichen Definition verschwindet der Elektronenfluss im Rahmen der Born-Oppenheimer Näherung. Durch die Verwendung der Kontinuitätsgleichung für den Elektronenfluss ergibt sich jedoch ein nicht-verschwindender Elektronenfluss. Weiter wurde ein Reflektionsprinzip hergeleitet, welches den Elektronenfluss auf den Kernfluss abbildet und umgekehrt. Zum Abschluss der Untersuchungen des eindimensionalen Shin-Metiu Modells wird das System auf zwei Dimensionen erweitert. Dabei zeigt sich, dass die adiabatischen Potentialflächen des Modells eine typische 'Mexican-hat' Topologie aufweist. Daraus ergibt sich, dass es möglich ist das System auf einen vibronischen (Jahn-Teller) Hamiltonian zurückzuführen. Im Zuge dessen wird das zweidimensionale System hinsichtlich der exakten Elektronen-Kerndynamik, sowie der Dynamik in den adiabatischen und diabatischen Anschauungen betrachtet. Die durchgeführten Rechnungen zeigen, dass das Passieren eines Wellenpaketes durch eine Konische Durchschneidung als eine diabatische Dynamik klassifiziert werden kann, wobei ein effizienter adiabatischer Populations-transfer stattfindet. Dieser Prozess kann sehr gut im diabatischen Bild reproduziert werden. Des Weiteren wird eine Wellenpaketdynamik um eine Konische Durchschneidung herum betrachtet und als adiabatische Dynamik klassifiziert. Der interessante Aspekt der geometrischen Phase, die mit dem Umrunden einer Konischen Durchschneidung assoziiert ist, wird mit der Rotation der elektronischen Wellenfunktion verknüpft. Zusätzlich wird hier das Auftreten der geometrische Phase in Autokorrelationsfunktionen und den daraus abgeleiteten Spektren charakterisiert. Die geometrische Phase wird zusätzlich als Mischungswinkel der Transformation zwischen dem diabatischen und adiabatischen Bild explizit berechnet. Zusammenfassend zeigen die Rechnugen an den verwendeten Modellsystemen viele fundamentale Aspekte der korrelierten Elektronen-Kerndynamik, obwohl sie auf lediglich zwei Partikel begrenzt sind. KW - Theoretische Chemie KW - Quantentheorie KW - Shin-Metiu Model KW - Coupled Electron-Nuclear Dynamics KW - Conical Intersection KW - Geometric Phase KW - Two-dimensional Spectroscopy KW - Electron Flux KW - Theoretical Chemistry Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161512 ER -