TY - JOUR A1 - Reddington, M. A1 - Klotz, Karl-Norbert A1 - Lohse, M. J. A1 - Hietel, B. T1 - Radiation inactivation analysis of the A\(_1\) adenosine receptor: decrease in radiation inactivation size in the presence of guanine nucleotide N2 - Radiation inactivation analysis of the binding of the A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes yielded a radiation inactivation size of 58 kDa. In the presence of GTPyS this was reduced to 33 kDa, in good agreement with the size of the ligand-binding subunit detected after photoaffinity labelling. The data indicate that the structural association of A\(_1\) adenosine receptors with G-protein components is altered in situ in the presence of guanine nucleotides. KW - Toxikologie KW - Adenosine receptor KW - A1 KW - Radiation inactivation KW - Target size KW - G-protein KW - (Rat brain membrane) Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60318 ER - TY - JOUR A1 - Lohse, M. J. A1 - Maurer, K. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Synergistic effects of calcium-mobilizing agents and adenosine on histamine release from rat peritoneal mast cells N2 - 1 Adenosine and its metabolically stable analogue N.etbyl-carboxamidoadenosine (NECA) enhance histamine release from rat peritoneal mast cells when tbese are stimulated by calciummobilizing agents. NECA and adenosine shift the concentration-response curve of tbe calcium ionophore A23187 to lower concentrations. 2 The potencies of NECA or adenosinein enhancing A23187-induced histamine release are dependent on the Ievel of stimulated release in tbe absence of adenosine analogues. At high Ievels of release their potencies are up to 20 times higher than at low Ievels. Consequently, averaged concentration-response curves of adenosine and NECA for enhancing bistamine release are shallow. 3 The adenosine transport blocker S-(p-nitrobenzyl)-6-thioinosine (NBTI) has no effect by itself at low Ievels of stimulated histamine release, but abolishes the enhancing effect of adenosine. At high Ievels of release, however, NBTI alone enhances the release of histamine. 4 lt is concluded that adenosine and calcium reciprocally enhance the sensitivity of the secretory processes to the effects of the other agent. The Ievels of intracellular adenosine obtained by trapping adenosine inside stimulated mast cells are sufficient to enhance histamine release substantially, suggesting that this effect may play a physiological and pathophysiological role. KW - Toxikologie Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60346 ER - TY - JOUR A1 - Lohse, M. J. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. A1 - Cristalli, G. A1 - Vittori, S. A1 - Grifantini, M. T1 - 2-Chloro-N\(^6\)-cyclopentyladenosine: a highly selective agonist at A\(_1\) adenosine receptors N2 - 2-Chloro-N\(^6\)-cyclopentyladenosine (CCPA) was synthesized as a potential high affinity ligand for At adenosine receptors. Binding of [\(^3\)H]PIA to A1 receptors of rat brain membranes was inhibited by CCP A with a Ki-value of 0.4 nM, compared to a Ki-value of 0.8 nM for the parent compound N\(^6\)-cyclopentyladenosine (CPA). Binding of [\(^3\)H]NECA to A\(_2\) receptors of rat striatal membranes was inhibited with a Ki-value of 3900 nM, demonstrating an almost 10,000-fold A\(_1\)-selectivity of CCPA. CCP A inhibited the activity of rat fat cell membrane adenylate cyclase, a model for the A\(_1\) receptor, with an IC\(_{50}\)-value of 33 nM, and it stimulated the adenylate cyclase activity of human platelet membranes with an EC\(_{50}\)-value of 3500 nM. The more than 100-fold A\(_1\)-selectivity compares favourably with a 38-fold selectivity of CPA. Thus, CCPA is an agonist at A\(_1\) adenosine receptors with a 4-fold higher selectivity and 2-fold higher affinity than CPA, and a considerably higher selectivity than the standard At receptor agonist R-N\(^6\) -phenylisopropyladenosine (R-PIA). CCP A represents the agonist with the highest selectivity for A\(_1\) receptors reported so far. KW - Toxikologie KW - Adenosine receptors KW - Adenylate cyclase Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60279 ER - TY - JOUR A1 - Lohse, M. J. A1 - Klotz, Karl-Norbert A1 - Lindenborn Fotinos, J. A1 - Reddington, M. A1 - Schwabe, U. A1 - Olsson, R. A. T1 - 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX) - a selective high affinity antagonist radioligand for A\(_1\) adenosine receptors N2 - The properties of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) as an antagonist ligand for A\(_1\) adenosirre receptors were examined and conipared with other radioligands for this receptor. DPCPX competitively antagonized both the inhibition of adenylate cyclase activity via A\(_1\) adenosirre receptors and the stimulationvia A\(_2\) adenosirre receptors. The K\(_i\)-values of this antagonism were 0.45 nM at the A\(_1\) receptor of rat fat cells, and 330 nM at the A\(_2\) receptor of human platelets, giving a more than 700-fold A\(_1\)-selectivity. A similar A\(_1\)-selectivity was determined in radioligand binding studies. Even at high concentrations, DPCPX did not significantly inhibit the soluble cAMPphosphodiesterase activity of human platelets. [\(^3\)H]DPCPX (105 Ci/mmol) bound in a saturable manner with high affinity to A\(_1\) receptors in membranes of bovine brain and heart, and rat brain and fat cells (K\(_D\) -values 50-190 pM). Its nonspecific binding was about 1% of total at K\(_D\) , except in bovine myocardial membranes (about 10%). Binding studies with bovine myocardial membranes allowed the analysis of both the high and low agonist affinity states of this receptor in a tissue with low receptor density. The binding properties of [\(^3\)H]DPCPX appear superior to those of other agonist and antagonist radioligands for the A\(_1\) receptor. KW - Toxikologie KW - Adenosine receptors KW - Adenylate cyclase KW - Phosphodiesterase KW - Xanthines KW - Radioligands Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60246 ER - TY - JOUR A1 - Lohse, M. J. A1 - Klotz, Karl-Norbert A1 - Jakobs, K. H. A1 - Schwabe, U. T1 - Barbiturates are selective antagonists at A\(_1\) adenosine receptors N2 - Barbiturates in pharmacologically relevant . concentrations inhibit binding of (R)-\(N^6\)-phenylisopropyl[\(^3\)H]adenosine ([\(^3\)H]PIA) to solubilized A\(_1\) adenosine receptors in a concentration-dependent, stereospecific, and competitive manner. K\(_i\) values are similar to those obtained for membrane-bound receptors and are 31 \(\mu\)M for ( ± )-5-(1 ,3-dimethyl)-5-ethylbarbituric acid [( ± )DMBB] and 89 \(\mu\)M for ( ± )-pentobarbital. Kinetic experiments demoostrate that barbiturates compete directly for the binding site of the receptor. The inhibition of rat striatal adenylate cyclase by unlabelled (R)-\(N^6\)-phenylisopropyladenosine [(R)-PIA] is antagonized by barbiturates in the same concentrations that inhibit radioligand binding. The Stimulation of adenylate cyclase via A\(_2\) adenosine receptors in membranes from NIE 115 neuroblastoma cells is antagonized only by 10-30 times higher concentrations of barbiturates. lt is concluded that barbiturates are selective antagonists at the A1 receptor subtype. In analogy to the excitatory effects of methylxanthines it is suggested that A\(_1\) adenosine receptor antagonism may convey excitatory properties to barbiturates. Key Words: Adenosine receptors-Barbiturates - Adenylate cyclase-Receptor solubilization-[3H]PIA binding-N1E 115 cells. Lohse M. J. et al. Barbiturates are selective antagonists at A1 adenosine receptors. KW - Toxikologie KW - adenosine receptors KW - barbiturates KW - adenylate cyclase KW - receptor solubilization KW - N1E 115 cells KW - [3H]PIA binding Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60187 ER - TY - JOUR A1 - Lohse, M. J. A1 - Klotz, Karl-Norbert A1 - Diekmann, E. A1 - Friedrich, K. A1 - Schwabe, U. T1 - 2',3'-Dideoxy-N\(^6\)-cyclohexyladenosine: an adenosine derivative with antagonist properties at adenosine receptors N2 - Tbe 2',3'-dideoxy analogue of the potent A\(_1\) receptor agonist, N\(^6\)-cyclohexyladenosine (CHA), was synthesized as a potential antagonist for the A\(_1\) adenosine receptor. In sturlies on adenylate cyclase 2',3'-dideoxy-N\(^6\)-cyclohexyladenosine (ddCHA) did not show agonist properties at A\(_1\) or at A\(_2\) receptors. However, it antagonized the inhibition by R-PIA of adenylate cyclase activity of fat cell membranes via A\(_1\) receptors with a K\(_i\) value of 13 \(\mu\)M. ddCHA competed for the binding of the selective A1 receptor antagonist, [\(^3\) HJ8-cyclopentyl-1,3-dipropylxantbine ([\(^3\)H]DPCPX), to rat brain membranes with a K\(_i\) value of 4.8 \(\mu\)M; GTP did not affect the competition curve. In contrast to the marked stereoselectivity of the A\(_1\) receptor for the cx- and the natural ß-anomer of adenosine, the cx-anomer of ddCHA showed a comparable affinity for the A\(_1\) receptor (K\(_i\) value 13.9 \8\mu\)M). These data indicate that the 2'- and 3'-hydroxy groups of adenosine and its derivatives are required foragonist activity at and high affinity binding to A\(_1\) adenosine receptors and for the distinction between the cx- and ß-forms. KW - Toxikologie KW - Adenosine receptors KW - Adenylate cyclase KW - Adenosine receptor antagonists Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60282 ER - TY - CHAP A1 - Lohse, M. J. A1 - Klotz, K.-N. A1 - Schwabe, U. A1 - Christalli, G. A1 - Vittori, S. A1 - Grifantini, M. T1 - Pharmacology and Biochemistry of Adenosine Receptors N2 - Adenosine modulates a variety of physiological functions via membrane-bound receptors. These receptors couple via G proteins to adenylate cyclase and K+channels. The A1 subtype mediates an inhibition of adenylate cyclase and an opening of K+-channels, and the A2 subtype a Stimulation of adenylate cyclase. Both subtypes have been characterized by radioligand binding. This has facilitated the development of agonists and antagonists with more than 1000-fold A1 selectivity. A1-selective photoaffinity labels have been used for the biochemical characterization of A1 receptors and the study of their coupling to adenylate cyclase. Such selective ligands allow the analysis of the involvement of adenosine receptors in physiological functions. Selective interference with adenosine receptors provides new pharmacological tools and eventually new therapeutic approaches to a number of pathophysiological states. KW - Adenosinrezeptor KW - Pharmakologie KW - Toxikologie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86251 ER - TY - JOUR A1 - Lohse, M. J. A1 - Elger, B. A1 - Lindenborn-Fotinos, J. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Separation of solubilized A\(_2\) adenosine receptors of human platelets from non-receptor [\(^3\)H]NECA binding sites by gel filtration N2 - Human platelet membranes were solubilized with the zwitterionic detergent CHAPS (3-[3-(cholamidopropyl)dimethylammonio]- 1-propanesulfonate) and the solubilized extract subjected to gel ftltration. Binding of the adenosine receptor agonist [\(^3\)H]NECA (5'-N-ethylcarboxamidoadenosine) was measured to the eluted fractions. Two [\(^3\)H]NECA binding peaks were eluted, the first of them with the void volume. This first peak represented between 10% and 25% of the [\(^3\)H]NECA binding activity eluted from the column. It bound [\(^3\)H]NECA in a reversible, saturable and GTPdependent manner with an affinity of 46 nmol/1 and a binding capacity of 510 fmol/mg protein. Various adenosine receptor ligands competed for the binding of [\(^3\)H]NECA to the frrst peak with a pharmacological proftle characteristic for the A\(_2\) adenosine receptor as determined from adenylate cyclase experiments. In contrast, most adenosine receptor ligands did not compete for [\(^3\)H]NECA binding to the second, major peak. These results suggest that a solubilized A\(_2\) receptor-Gs protein complex of human platelets can be separated from other [\(^3\)H]NECA binding sites by gel filtration. This allows reliable radioligand binding studies of the A2 adenosine receptor of human plate1ets. KW - Toxikologie KW - A2 Adenosine receptor KW - Human platelets KW - Radioligand binding KW - Adenylate cyclase Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60309 ER - TY - JOUR A1 - Lohse, M. J. A1 - Böser, S. A1 - Klotz, Karl-Norbert A1 - Schwabe, U. T1 - Affinities of barbiturates for the GABA-receptor complex and A\(_1\) adenosine receptors: A possible explanation of their excitatory effects N2 - The effects of barbiturates on the GABA·receptor complex and the A\(_1\) adenosine receptor were studied. At the GABA-receptor complex the barbiturates inhibited the binding of [\(^{35}\)S]t-butylbicyclophosphorothionate [\(^{35}\)S]TBPT) and enhanced the binding of [\(^3\)H]diazepam. Kinetic and saturation experiments showed that both effects were allosteric. Whereas all barbiturates caused complete inhibition of [\(^{35}\)S]TBPT binding, they showed varying degrees of maximal enhancement of [\(^3\)H]diazepam binding; (±)methohexital was idenafied as the most efficacious compound for this enhancement. At the A\(_1\) adenosine receptor all barbiturates inhibited the binding of [\(^3\)H]N\(^6\)-phenylisopropyladenosine (\(^3\)H]PIA) in a competitive manner. The comparison of the effects on [\(^3\)H]diazepam and [\(^3\)H]PIA binding showed that excitatory barbiturates interact preferentially with the A\(_1\) adenosine receptor, and sedative/anaesthetic barbiturates with the GABA-receptor complex. It is speculated that the interaction with these two receptors might be the basis of the excitatory versus sedative/ anaesthetic properties of barbiturates. KW - Toxikologie KW - GABA-receptor complex KW - Adenosine receptors KW - Barbiturates Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60250 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Lohse, M. J. A1 - Schwabe, U. A1 - Cristalli, G. A1 - Vittori, S. A1 - Grifantini, M. T1 - 2-Chloro-N\(^6\)-[\(^3\)H]cyclopentyladenosine ([\(^3\)H]CCPA) - a high affinity agonist radioligand for A\(_1\) adenosine receptors N2 - The tritiated analogue of 2-chloro-N6-cyclopentyladenosine (CCPA), an adenosine derivative with subnanomolar affinity and a 10000-fold selectivity for A1 adenosine receptors, has been examined as a new agonist radioligand. [3H]CCP A was prepared with a specifi.c radioactivity of 1.58 TBqjmmol ( 43 Ci/mmol) and bound in a reversible manner to A1 receptors from rat brain membranes with a high affinity K0 -value of 0.2 nmol/1. In the presence of GTP a K0 -value of 13 nmol/1 was determined for the low affinity state for agonist binding. Competition of several adenosine receptor agonists and antagonists for [3H]CCPA binding to rat brain membranes confrrmed binding to an A1 receptor. Solubilized A1 receptors bound [3H]CCPA with similar affinity for the high affinity state. At solubilized receptors a reduced association rate was observed in the presence of MgC12, as has been shown for the agonist [ 3H]N6-phenylisopropyladenosine ([3H]PIA). [3H]CCPA was also used for detection of A1 receptors in rat cardio myocyte membranes, a tissue with a very low receptor density. A K0 -value of 0.4 nmol/1 and a Bmax-value of 16 fmol/ mg protein was determined in these membranes. In human platelet membranes no specific binding of [3H]CCPA was measured at concentrations up to 400 nmoljl, indicating that A2 receptors did not bind [3H]CCPA. Based on the subnanomolar affinity and the high selectivity for A1 receptors [ 3H]CCPA proved to be a useful agonist radioligand for characterization of A 1 adenosine receptors also in tissues with very low receptor density. KW - Toxikologie KW - Adenosine receptors KW - Radioligauds KW - agonists Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60328 ER -