TY - JOUR A1 - Wyler, Emanuel A1 - Menegatti, Jennifer A1 - Franke, Vedran A1 - Kocks, Christine A1 - Boltengagen, Anastasiya A1 - Hennig, Thomas A1 - Theil, Kathrin A1 - Rutkowski, Andrzej A1 - Ferrai, Carmelo A1 - Baer, Laura A1 - Kermas, Lisa A1 - Friedel, Caroline A1 - Rajewsky, Nikolaus A1 - Akalin, Altuna A1 - Dölken, Lars A1 - Grässer, Friedrich A1 - Landthaler, Markus T1 - Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection JF - Genome Biology N2 - Background Herpesviruses can infect a wide range of animal species. Herpes simplex virus 1 (HSV-1) is one of the eight herpesviruses that can infect humans and is prevalent worldwide. Herpesviruses have evolved multiple ways to adapt the infected cells to their needs, but knowledge about these transcriptional and post-transcriptional modifications is sparse. Results Here, we show that HSV-1 induces the expression of about 1000 antisense transcripts from the human host cell genome. A subset of these is also activated by the closely related varicella zoster virus. Antisense transcripts originate either at gene promoters or within the gene body, and they show different susceptibility to the inhibition of early and immediate early viral gene expression. Overexpression of the major viral transcription factor ICP4 is sufficient to turn on a subset of antisense transcripts. Histone marks around transcription start sites of HSV-1-induced and constitutively transcribed antisense transcripts are highly similar, indicating that the genetic loci are already poised to transcribe these novel RNAs. Furthermore, an antisense transcript overlapping with the BBC3 gene (also known as PUMA) transcriptionally silences this potent inducer of apoptosis in cis. Conclusions We show for the first time that a virus induces widespread antisense transcription of the host cell genome. We provide evidence that HSV-1 uses this to downregulate a strong inducer of apoptosis. Our findings open new perspectives on global and specific alterations of host cell transcription by viruses. KW - Virology KW - Herpes KW - Virus KW - Antisense KW - Transcription KW - IncRNA KW - ICP4 KW - BBC3 KW - NFKB Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173381 VL - 18 ER - TY - JOUR A1 - Waldholm, Johan A1 - Wang, Zhi A1 - Brodin, David A1 - Tyagi, Anu A1 - Yu, Simei A1 - Theopold, Ulrich A1 - Östlund Farrants, Ann Kristin A1 - Visa, Neus T1 - SWI/SNF regulates the alternative processing of a specific subset of pre-mRNAs in \(Drosophila\) \(melanogaster\) JF - BMC Molecular Biology N2 - Background: The SWI/SNF chromatin remodeling factors have the ability to remodel nucleosomes and play essential roles in key developmental processes. SWI/SNF complexes contain one subunit with ATPase activity, which in Drosophila melanogaster is called Brahma (Brm). The regulatory activities of SWI/SNF have been attributed to its influence on chromatin structure and transcription regulation, but recent observations have revealed that the levels of Brm affect the relative abundances of transcripts that are formed by alternative splicing and/or polyadenylation of the same pre-mRNA. Results: We have investigated whether the function of Brm in pre-mRNA processing in Drosophila melanogaster is mediated by Brm alone or by the SWI/SNF complex. We have analyzed the effects of depleting individual SWI/SNF subunits on pre-mRNA processing throughout the genome, and we have identified a subset of transcripts that are affected by depletion of the SWI/SNF core subunits Brm, Snr1 or Mor. The fact that depletion of different subunits targets a subset of common transcripts suggests that the SWI/SNF complex is responsible for the effects observed on pre-mRNA processing when knocking down Brm. We have also depleted Brm in larvae and we have shown that the levels of SWI/SNF affect the pre-mRNA processing outcome in vivo. Conclusions: We have shown that SWI/SNF can modulate alternative pre-mRNA processing, not only in cultured cells but also in vivo. The effect is restricted to and specific for a subset of transcripts. Our results provide novel insights into the mechanisms by which SWI/SNF regulates transcript diversity and proteomic diversity in higher eukaryotes. KW - Chromatin-remodeling complexes KW - In-vivo KW - Genes KW - Distinct KW - Brahma KW - Transcription KW - Trithorax KW - Subunit KW - Exons KW - BRM Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142613 VL - 12 IS - 46 ER - TY - JOUR A1 - Schneider, Eberhard A1 - Dittrich, Marcus A1 - Böck, Julia A1 - Nanda, Indrajit A1 - Müller, Tobias A1 - Seidmann, Larissa A1 - Tralau, Tim A1 - Galetzka, Danuta A1 - El Hajj, Nady A1 - Haaf, Thomas T1 - CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development JF - Gene N2 - Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny. KW - Autism spectrum disorders KW - DNA methylation KW - Genome KW - Autism KW - Frontal cortex KW - Human prefrontal cortex KW - Gene-expression KW - Schizophrenia KW - Patterns KW - Transcription KW - Epigenetics KW - Environment KW - Fetal brain development KW - DNA methylation dynamics KW - Methylome Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186936 VL - 592 IS - 1 ER - TY - JOUR A1 - Rauert, H. A1 - Stühmer, T. A1 - Bargou, R. A1 - Wajant, H. A1 - Siegmund, D. T1 - TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms JF - Cell Death and Disease N2 - The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFjBmediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFjB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival KW - apoptosis KW - CD95 KW - multiple myeloma KW - NFkB KW - TNF KW - TRAIL KW - NF-Kappa-B KW - Tumor-necrosis-factor KW - Factor receptor KW - Factor-alpha KW - Activation KW - Polymorphisms KW - Inhibitor KW - Promoter KW - Transcription KW - Expression Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133486 VL - 2 ER - TY - JOUR A1 - Morschhäuser, J. A1 - Uhlin, B. E. A1 - Hacker, Jörg T1 - Transcriptional analysis and regulation of the sfa determinant coding for S fimbria of pathogenic E. coli strains N2 - The sfa determinant codes for S fimbrial adhesins which constitute adherence factors of pathogenic Escherichia coli strains. Wehave recently shown that the sfa determinant is transcribed from three prömoters, pA, pB, and pC. In comparison with the promoters pB and pC, promoter pA, which is located in front of the structural gene sfaA, showed very weak activity. Herewe have determined the exact positions ofthe mRNA start points by primer extension studies. We have also shown that mRNAs of 500, 700 and 1400 bases can be detected using oligonucleotide probes specific for the genes sfaB, sfaC and sfaA. SfaB and SfaC arepositive regulators infiuencing fimbriation and the production of the S-specific adhesin which is encoded by the gene sfaS Iocated in the distal half of the determinant. In addition, it is demonstrated that SfaB and SfaC interfere with the regulatory effect of the histone-like protein H-NS, encoded by a locus termed drdX or osmZ. In a drdx+ strain the regulators are necessary for transcription of the sfa determinant. In contrast, sfa expression is activator-independent in a drdx- strain. In this latter genetic background, a substantial fraction of the sfa transcripts is initiated from promoter pA. On the basis of these data we discuss a model for the regulation of this adhesin-specific determinant. KW - Infektionsbiologie KW - Gene regulation KW - Fimbriae KW - Adhesion KW - Transcription KW - trans-activation Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59844 ER - TY - JOUR A1 - Matos, Isa A1 - Machado, Miguel P. A1 - Schartl, Manfred A1 - Coelho, Maria Manuela T1 - Allele-specific expression variation at different ploidy levels in Squalius alburnoides JF - Scientific Reports N2 - Allopolyploid plants are long known to be subject to a homoeolog expression bias of varying degree. The same phenomenon was only much later suspected to occur also in animals based on studies of single selected genes in an allopolyploid vertebrate, the Iberian fish Squalius alburnoides. Consequently, this species became a good model for understanding the evolution of gene expression regulation in polyploid vertebrates. Here, we analyzed for the first time genome-wide allele-specific expression data from diploid and triploid hybrids of S. alburnoides and compared homoeolog expression profiles of adult livers and of juveniles. Co-expression of alleles from both parental genomic types was observed for the majority of genes, but with marked homoeolog expression bias, suggesting homoeolog specific reshaping of expression level patterns in hybrids. Complete silencing of one allele was also observed irrespective of ploidy level, but not transcriptome wide as previously speculated. Instead, it was found only in a restricted number of genes, particularly ones with functions related to mitochondria and ribosomes. This leads us to hypothesize that allelic silencing may be a way to overcome intergenomic gene expression interaction conflicts, and that homoeolog expression bias may be an important mechanism in the achievement of sustainable genomic interactions, mandatory to the success of allopolyploid systems, as in S. alburnoides. KW - Gene expression analysis KW - Transcription KW - Transcriptomic Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200910 VL - 9 ER - TY - THES A1 - Lorenzin, Francesca T1 - Regulation of transcription by MYC - DNA binding and target genes T1 - Transkriptionelle Regulation durch MYC - DNA-Bindung und Zielgene N2 - MYC is a transcription factor, whose expression is elevated or deregulated in many human cancers (up to 70%) and is often associated with aggressive and poorly differentiated tumors. Although MYC is extensively studied, discrepancies have emerged about how this transcription factor works. In primary lymphocytes, MYC promotes transcriptional amplification of virtually all genes with an open promoter, whereas in tumor cells MYC regulates specific sets of genes that have significant prognostic value. Furthermore, the set of target genes that distinguish MYC’s physiological function from the pathological/oncogenic one, whether it exists or not, has not been fully understood yet. In this study, it could be shown that MYC protein levels within a cell and promoter affinity (determined by E-box presence or interaction with other proteins) of target genes toward MYC are important factors that influence MYC activity. At low levels, MYC can amplify a certain transcriptional program, which includes high affinity binding sites, whereas at high levels MYC leads to the specific up- and down regulation of genes with low affinity. Moreover, the promoter affinity characterizes different sets of target genes which can be distinguished in the physiological or oncogenic MYC signatures. MYC-mediated repression requires higher MYC levels than activation and formation of a complex with MIZ1 is necessary for inhibiting expression of a subset of MYC target genes. N2 - MYC ist ein Transkriptionsfaktor, dessen Expression in vielen humanen Tumoren (bis zu 70 %) erhöht oder dereguliert ist. Die Tumore, in denen viel MYC hergestellt wird, zeichnen sich durch einen geringen Differenzierungsgrad aus und verhalten sich sehr aggressiv. Obwohl das biologische Verhalten des MYC Proteins intensiv untersucht wurde, sind unterschiedliche Modelle, wie dieser Transkriptionsfaktor funktioniert, entwickelt worden. In primären Lymphozyten verstärkt MYC die Expression fast aller Gene mit offener Chromatinstruktur, während MYC in Tumorzellen spezifische Gengruppten reguliert, deren Expression mit der Prognose von Patienten korreliert. Es ist also unklar, ob sich die Zielgene der physiologischen Funktion von Myc von den oncogenen/pathophysiologischen Zielgenen unterscheidet und um welche Gene es sich bei letzteren handelt. In dieser Arbeit konnte gezeigt werden, dass Expressionsniveau von MYC und unterschiedliche Promotoraffinitäten zu MYC (charakterisiert durch den Ebox-Gehalt und Interaktionen zu anderen Proteinen) wichtig für die Aktivität des MYC Proteins sind. So kann Myc bei niedrigen Konzentrationen ein bestimmtes transkriptionelles Programm amplifizieren, das sich aus hochaffinen Promotoren zusammensetzt. Bei hohen Konzentrationen hingegen führt MYC zur transkriptionellen Aktivierung und Repression bestimmter Zielgengruppen, die sich durch niedrige Affinität zu MYC auszeichnen. Somit ist die Promotoraffinität ein Parameter, der physiologische von oncogenen MYC Signaturen trennen kann. Darüberhinaus konnte gezeigt werden, dass MYC-vermittelte Repression höhere MYC Mengen benötigt, als MYC-vermittelte Transaktivierung und die Komplexbildung mit MIZ1 für die Repression einer Gruppe an MYC Zielgenen nötig ist. KW - MYC KW - Transcription Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150766 ER - TY - THES A1 - Kraus, Amelie Johanna T1 - H2A.Z – a molecular guardian of RNA polymerase II transcription in African trypanosomes T1 - H2A.Z – eine molekulare Wächterin der RNA Polymerase II Transkription in Afrikanischen Trypanosomen N2 - In eukaryotes, the enormously long DNA molecules need to be packaged together with histone proteins into nucleosomes and further into compact chromatin structures to fit it into the nucleus. This nuclear organisation interferes with all phases of transcription that require the polymerase to bind to DNA. During transcription – the process in which the hereditary information stored in DNA is transferred to many transportable RNA molecules - nucleosomes form a physical obstacle for polymerase progression. Thus, transcription is usually accompanied by processes mediating nucleosome destabilisation, including post-translational histone modifications (PTMs) or exchange of canonical histones by their variant forms. To the best of our knowledge, acetylation of histones has the highest capability to induce chromatin opening. The lysine modification can destabilise histone-DNA interactions within a nucleosome and can serve as a binding site for various chromatin remodelers that can modify the nucleosome composition. For example, H4 acetylation can impede chromatin folding and can stimulate the exchange of canonical H2A histone by its variant form H2A.Z at transcription start sites (TSSs) in many eukaryotes, including humans. As histone H4, H2A.Z can be post-translationally acetylated and as acetylated H4, acetylated H2A.Z is enriched at TSSs suggested to be critical for transcription. However, thus far, it has been difficult to study the cause and consequence of H2A.Z acetylation. Even though, genome-wide chromatin profiling studies such as ChIP-seq have already revealed the genomic localisation of many histone PTMs and variant proteins, they can only be used to study individual chromatin marks and not to identify all factors important for establishing a distinct chromatin structure. This would require a comprehensive understanding of all marks associated to a specific genomic locus. However, thus far, such analyses of locus-specific chromatin have only been successful for repetitive regions, such as telomeres. In my doctoral thesis, I used the unicellular parasite Trypanosoma brucei as a model system for chromatin biology and took advantage of its chromatin landscape with TSSs comprising already 7% of the total T. brucei genome (humans: 0.00000156%). Atypical for a eukaryote, the protein-coding genes are arranged in long polycistronic transcription units (PTUs). Each PTU is controlled by its own ~10 kb-wide TSS, that lies upstream of the PTU. As observed in other eukaryotes, TSSs are enriched with nucleosomes containing acetylated histones and the histone variant H2A.Z. This is why I used T. brucei to particularly investigate the TSS-specific chromatin structures and to identify factors involved in H2A.Z deposition and transcription regulation in eukaryotes. To this end, I established an approach for locus-specific chromatin isolation that would allow me to identify the TSSs- and non-TSS-specific chromatin marks. Later, combining the approach with a method for quantifying lysine-specific histone acetylation levels, I found H2A.Z and H4 acetylation enriched in TSSs-nucleosomes and mediated by the histone acetyltransferases HAT1 and HAT2. Depletion of HAT2 reduced the levels of TSS-specific H4 acetylation, affected targeted H2A.Z deposition and shifted the sites of transcription initiation. Whereas HAT1 depletion had only a minor effect on H2A.Z deposition, it had a strong effect on H2A.Z acetylation and transcription levels. My findings demonstrate a clear link between histone acetylation, H2A.Z deposition and transcription initiation in the early diverged unicellular parasite T. brucei, which was thus far not possible to determine in other eukaryotes. Overall, my study highlights the usefulness of T. brucei as a model system for studying chromatin biology. My findings allow the conclusion that H2A.Z regardless of its modification state defines sites of transcription initiation, whereas H2A.Z acetylation is essential co-factor for transcription initiation. Altogether, my data suggest that TSS-specific chromatin establishment is one of the earliest developed mechanisms to control transcription initiation in eukaryotes. N2 - In Eukaryoten muss die genomische DNA zusammen mit Histonproteinen zu Nukleosomen und weiter zu kompakten Chromatinstrukturen verpackt werden, damit sie in den Zellkern passt. Diese Organisation behindert die Transkription bei jedem Schritt, bei dem die Polymerase an der DNA bindet. Während der Transkription – dem Prozess bei dem die in der DNA gespeicherte Erbinformation in viele transportable RNA Molekülen umgewandelt wird – stellen Nukleosomen ein physikalisches Hindernis für das Vorankommen der Polymerase dar. Aus diesem Grund wird die Transkription üblicherweise von Prozessen begleitet, die für die Destabilisierung der Nukleosomen sorgen, wie zum Beispiel post-translationale Modifizierung (PTM) der Histone oder der Austausch von kanonischen Histonproteinen durch eine ihrer Varianten. Soweit bisher bekannt ist Histonacetylierung am besten dafür geeignet, eine offene Chromatinstruktur bereit zu stellen. Die Lysinmodifizierung kann Interaktionen zwischen der DNA und den Histonen innerhalb eines Nukleosomes destabilisieren und als Andockstelle für einige Proteinkomplexe sogenannte Chromatin-Modellierer fungieren, die die Zusammensetzung eines Nukleosomes verändern können. Zum Beispiel, kann Acetylierung am Histon H4 das „Zusammenfalten“ des Chromatins erschweren und den Austausch von kanonischem H2A mit ihrer Variante H2A.Z an den Transkriptiosinitiationsstellen (TSSen) in vielen eukaryotischen Organismen, Menschen eingeschlossen, stimulieren. Wie Histon H4, kann auch H2A.Z post-translationell acetyliert werden und wie acetyliertes H4, findet man auch acetyliertes H2A.Z vor allem an TSSen. Deswegen geht man davon aus, dass es sehr wichtig für die Transkriptioninitiierung ist. Allerdings war es bisher nicht möglich, die Ursache und Wirkung von H2A.Z Acetylierung genauer zu untersuchen. Genom-weite Chromatinprofilstudien wie z.B. ChIP-Seq ermöglichen es die genomische Lokalisierung von vielen Histon-Modifizierungen und -Varianten zu bestimmen. Dennoch reichen sie nicht dafür aus alle Faktoren, die für die Bildung einer bestimmten Chromatinstruktur notwendig sind, gleichzeitig herauszufinden. Das würde voraussetzen, dass man alle Merkmale der genomischen Stelle kennt. Bisher waren Analysen von spezifischen Chromatinstellen nur erfolgreich, wenn das Chromatin von einer repetitiven Region, wie z.B. Telomeren, stammt. In meiner Doktorarbeit verwendete ich den einzelligen Parasiten Trypanosoma brucei als Modelsystem für Chromatinbiologie. Dabei machte ich mir dessen Chromatinorganisation zunutze, die eher untypisch für einen eukaryotische Organismus ist. TSSen machen hier ungefähr 7% des gesamten Genoms aus (Mensch: 0.00000156%). Protein-kodierende Gene sind in langen polycistronischen Transkriptionseinheiten (PTE) angeordnet. Jede dieser Einheiten besitzt eine eigene TSS, die vor der PTE liegt, und bis zu 10 kb lang sein kann. Jedoch, wie in anderen Eukaryoten, sind an den TSSen Nukleosomen angereichert, die sich durch acetylierte Histone und den Einbau der Histonvariante H2A.Z auszeichnen. Aus diesen Gründen verwendete ich T. brucei, um während meiner Doktorarbeit die Chromatinstrukturen, die TSSen auszeichnen, genauer zu untersuchen und die Faktoren, die bei der H2A.Z Positionierung und dadurch bei der Transkriptionsregulation in Eukaryoten eine Rolle spielen, herauszufinden. Dafür etablierte ich zuerst eine Methode, mit der man Chromatin von einer bestimmten genomischen Stelle isolieren kann und die es mir ermöglichen würde, die Merkmale von TSS-spezifischen und -unspezifischen Chromatin zu identifizieren. Später konnte ich das entwickelte Protokoll mit einer Methode zur Quantifizierung von Lysin-spezifischen Histonacetylierung kombinieren. Dadurch konnte ich herausfinden, dass Nukleosomen an trypanosomischen TSSen stark acetyliertes H2A.Z und H4 enthalten und dass für diese Modifizierungen die Histonacetyltransferasen HAT1 und HAT2 verantwortlich sind. Eine Reduzierung der HAT2-Levels führte zu einer Reduzierung von H4 Acetylierung, verschlechterte die gezielte H2A.Z Positionierung und führte dazu, dass die Transkriptioninitiierung sich verlagerte. Wohingegen eine Reduzierung von HAT1, die zwar nur einen kleinen Einfluss auf die H2A.Z Positionierung hatte, eine sehr starke Verringerung von acetyliertem H2A.Z und der Transkriptionsrate zur Folge hatte. Durch meine Ergebnisse konnte ich zeigen, dass in T. brucei, einem evolutionär divergenten eukaryotischem Organismus, die Prozesse der Histonacetylierung, H2A.Z Positionierung und Transkriptionsinitiierung sehr stark miteinander verbunden sind. Meine Arbeit ist des weiteren ein Beweis dafür, dass T. brucei ein sehr wichtiger Modellorganismus für die Forschung an Chromatin ist. Insgesamt erlauben meine Ergebnisse die Schlussfolgerung, dass H2A.Z, egal ob modifiziert oder nicht, ein Herausstellungsmerkmal für TSSen ist, während acetyliertes H2A.Z essentiell für die Transkriptionsinitiierung darstellt. Zusammengefasst, weisen die Daten meiner Doktorarbeit darauf hin, dass die Etablierung von bestimmten Chromatinstrukturen an TSSen eines der frühesten entwickelten Mechanismen zur Kontrolle der Transkriptionsinitiierung in Eukaryoten ist. KW - Chromatin KW - Histone KW - Histonacetyltransferase KW - Transcription KW - Acetylation KW - H2A.Z KW - Trypanosoma Brucei KW - Histone Acetylation KW - Transcription KW - Chromatin KW - Histone KW - Histone modification KW - Histone variant Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250568 ER - TY - JOUR A1 - Ji, Changhe A1 - Bader, Jakob A1 - Ramanathan, Pradhipa A1 - Hennlein, Luisa A1 - Meissner, Felix A1 - Jablonka, Sibylle A1 - Mann, Matthias A1 - Fischer, Utz A1 - Sendtner, Michael A1 - Briese, Michael T1 - Interaction of 7SK with the Smn complex modulates snRNP production JF - Nature Communications N2 - Gene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand. KW - Molecular neuroscience KW - RNA KW - RNA splicing KW - Transcription Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259125 VL - 12 IS - 1 ER - TY - THES A1 - Ji, Changhe T1 - The role of 7SK noncoding RNA in development and function of motoneurons T1 - Die Rolle der nichtkodierenden RNA 7SK bei der Entwicklung und Funktion von Motoneuronen N2 - In mammals, a major fraction of the genome is transcribed as non-coding RNAs. An increasing amount of evidence has accumulated showing that non-coding RNAs play important roles both for normal cell function and in disease processes such as cancer or neurodegeneration. Interpreting the functions of non-coding RNAs and the molecular mechanisms through which they act is one of the most important challenges facing RNA biology today. In my Ph.D. thesis, I have been investigating the role of 7SK, one of the most abundant non-coding RNAs, in the development and function of motoneurons. 7SK is a highly structured 331 nt RNA transcribed by RNA polymerase III. It forms four stem-loop (SL) structures that serve as binding sites for different proteins. Larp7 binds to SL4 and protects the 3' end from exonucleolytic degradation. SL1 serves as a binding site for HEXIM1, which recruits the pTEFb complex composed of CDK9 and cyclin T1. pTEFb has a stimulatory role for transcription and is regulated through sequestration by 7SK. More recently, a number of heterogeneous nuclear ribonucleoproteins (hnRNPs) have been identified as 7SK interactors. One of these is hnRNP R, which has been shown to have a role in motoneuron development by regulating axon growth. Taken together, 7SK’s function involves interactions with RNA binding proteins, and different RNA binding proteins interact with different regions of 7SK, such that 7SK can be considered as a hub for recruitment and release of different proteins. The questions I have addressed during my Ph.D. are as follows: 1) which region of 7SK interacts with hnRNP R, a main interactor of 7SK? 2) What effects occur in motoneurons after the protein binding sites of 7SK are abolished? 3) Are there additional 7SK binding proteins that regulate the functions of the 7SK RNP? Using in vitro and in vivo experiments, I found that hnRNP R binds both the SL1 and SL3 region of 7SK, and also that pTEFb cannot be recruited after deleting the SL1 region but is able to bind to a 7SK mutant with deletion of SL3. In order to answer the question of how the 7SK mutations affect axon outgrowth and elongation in mouse primary motoneurons, we proceeded to conduct rescue experiments in motoneurons by using lentiviral vectors. The constructs were designed to express 7SK deletion mutants under the mouse U6 promoter and at the same time to drive expression of a 7SK shRNA from an H1 promoter for the depletion of endogenous 7SK. Using this system we found that 7SK mutants harboring deletions of either SL1 or SL3 could not rescue the axon growth defect of 7SK-depleted motoneurons suggesting that 7SK/hnRNP R complexes are integral for this process. In order to identify novel 7SK binding proteins and investigate their functions, I proceeded to conduct pull-down experiments by using a biotinylated RNA antisense oligonucleotide that targets the U17-C33 region of 7SK thereby purifying endogenous 7SK complexes. Following mass spectrometry of purified 7SK complexes, we identified a number of novel 7SK interactors. Among these is the Smn complex. Deficiency of the Smn complex causes the motoneuron disease spinal muscular atrophy (SMA) characterized by loss of lower motoneurons in the spinal cord. Smn has previously been shown to interact with hnRNP R. Accordingly, we found Smn as part of 7SK/hnRNP R complexes. These proteomics data suggest that 7SK potentially plays important roles in different signaling pathways in addition to transcription. N2 - Bei Säugetieren wird ein großer Teil des Genoms als nicht-kodierende RNAs transkribiert. Es gibt immer mehr Hinweise darauf, dass nicht-kodierende RNAs eine wichtige Rolle sowohl für die normale Zellfunktion als auch bei Krankheitsprozessen wie Krebs oder Neurodegeneration spielen. Die Interpretation der Funktionen nicht-kodierender RNAs und der molekularen Mechanismen, über die sie wirken, ist eine der wichtigsten Herausforderungen, denen die RNA-Biologie heute gegenübersteht. In meiner Promotionsarbeit habe ich die Rolle von 7SK, einer der am häufigsten vorkommenden nicht-kodierenden RNAs, bei der Entwicklung und Funktion von Motoneuronen untersucht. 7SK ist eine RNA, die aus 331 Nukleotiden besteht und deren Struktur bekannt ist. Sie wird von der RNA-Polymerase III transkribiert. Sie bildet vier Stem-Loop (SL)-Strukturen, die als Bindungsstellen für verschiedene Proteine dienen. LARP7 bindet an SL4 und schützt das 3'-Ende vor exonukleolytischem Abbau. SL1 dient als Bindungsstelle für HEXIM1, das den P-TEFb-Komplex rekrutiert, der aus CDK9 und Cyclin T1 besteht. P-TEFb hat eine stimulierende Rolle für die Transkription und wird durch Sequestrierung durch 7SK reguliert. In jüngerer Zeit wurde eine Reihe von heterogenen nukleären Ribonukleoproteinen (hnRNPs) als 7SK-Interaktoren identifiziert. Eines davon ist hnRNP R, von dem gezeigt wurde, dass es eine Rolle bei der Entwicklung von Motoneuronen spielt, indem es das Axonwachstum reguliert. Durch die Interaktion mit P-TEFb und RNA-bindenden Proteinen kann 7SK als Drehscheibe für die Rekrutierung und Freisetzung verschiedener Proteine betrachtet werden. Die Fragen, mit denen ich mich während meiner Doktorarbeit beschäftigt habe, lauten wie folgt: 1) Welche Region von 7SK interagiert mit hnRNP R, einem Hauptinteraktor von 7SK? 2) Welche Effekte treten in Motoneuronen auf, wenn die Bindung von hnRNP R an 7SK inhibiert wird? 3) Gibt es zusätzliche 7SK-bindende Proteine, die die Funktionen des 7SK RNPs regulieren? Mit Hilfe von in vitro und in vivo Experimenten fand ich heraus, dass hnRNP R sowohl die SL1- als auch die SL3-Region von 7SK bindet, und dass P-TEFb nach der Deletion der SL1-Region nicht rekrutiert werden kann, aber in der Lage ist, an eine 7SK-Mutante mit Deletion von SL3 zu binden. Um die Frage zu beantworten, wie sich die 7SK-Mutationen auf Axonwachstum in primären Motoneuronen der Maus auswirken, führten wir Rettungsexperimente an Motoneuronen unter Verwendung lentiviraler Vektoren durch. Die Konstrukte wurden so konzipiert, dass sie 7SK-Deletionsmutanten durch den U6-Promotor der Maus exprimieren und gleichzeitig eine 7SK-shRNA von einem H1-Promotor für die Depletion von endogenem 7SK transkribieren. Mit diesem System fanden wir heraus, dass 7SK-Mutanten, die Deletionen von SL1 oder SL3 beherbergen, den Axon-Wachstumsdefekt von 7SK-depletierten Motoneuronen nicht retten konnten, was darauf hindeutet, dass 7SK/hnRNP R-Komplexe für diesen Prozess von Bedeutung sind. Um neue 7SK-Bindungsproteine zu identifizieren und ihre Funktionen zu untersuchen, führte ich Pulldown-Experimente durch, bei denen ich ein biotinyliertes RNA-Antisense-Oligonukleotid verwendete, das an die U17-C33-Region von 7SK bindet und dadurch Aufreinigung endogener 7SK-Komplexe erlaubt. Nach der Massenspektrometrie der gereinigten 7SK-Komplexe identifizierten wir eine Reihe neuer 7SK-Interaktoren. Einer davon ist der Smn-Komplex. Ein Mangel des Smn-Komplexes verursacht die Motoneuronerkrankung Spinale Muskelatrophie (SMA), die durch den Verlust der unteren Motoneuronen im Rückenmark gekennzeichnet ist. Es wurde bereits gezeigt, dass Smn mit hnRNP R interagiert. Dementsprechend fanden wir Smn als Teil des 7SK/hnRNP R-Komplexes. Diese Proteom-Daten deuten darauf hin, dass 7SK neben der Transkription möglicherweise auch in anderen Signalwegen wie der spliceosomalen snRNP Biogenese eine wichtige Rolle spielt. KW - Spliceosome KW - Interaction of 7SK with the Smn complex modulates snRNP production KW - 7SK KW - SMN KW - snRNP KW - Transcription KW - hnRNP Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224638 ER -