TY - THES A1 - Kaufmann, Christina T1 - Discrete Supramolecular Architectures of Bay-linked Perylene Bisimide Dimers by Self-Assembly and Folding T1 - Diskrete supramolekulare Architekturen bucht-verknüpfter Perylenbisimid Dimere durch Selbstassemblierung und Faltung N2 - Supramolecular self-assembly of perylene bisimide (PBI) dyes via non-covalent forces gives rise to a high number of different PBI architectures with unique optical and functional properties. As these properties can be drastically influenced by only slightly structural changes of the formed supramolecular ensembles (Chapter 2.1) the controlled self-assembly of PBI dyes became a central point of current research to design innovative materials with a high potential for different applications as for example in the fields of organic electronics or photovoltaics. As PBI dyes show a strong tendency to form infinite aggregated structures (Chapter 2.2) the aim of this thesis was to precisely control their self-assembly to create small, structurally well-defined PBI assemblies in solution. Chapter 2.3 provides an overview on literature known strategies that were established to realize this aim. It could be demonstrated that especially backbone-directed intra- and intermolecular self-assembly of covalently linked Bis-PBI dyes evolved as one of the most used strategies to define the number of stacked PBI chromophores by using careful designed spacer units with regard to their length and flexibility. By using conventional spectroscopic methods like UV/Vis and fluorescence experiments in combination with NMR measurements an in-depth comparison of the molecular and optical properties in solution both in the non-stacked and aggregated state of the target compounds could be elucidated to reveal structure-property relationships of different PBI architectures. Thus, it could be demonstrated, that spacer units that pre-organize two PBI chromophores with an inter-planar distance of r < 7 Å lead to an intramolecular folding, whereas linker moieties with a length between 7 to 11 Å result in an intermolecular self-assembly of the respective Bis-PBIs dyes via dimerization to form well-defined quadruple PBI pi-stacks. Hence, if the used spacer units ensure an inter-planar distance r > 14 Å larger oligomeric PBI pi-stacks are generated. In Chapter 4 a detailed analysis of the exciton coupling in a highly defined H-aggregate quadruple PBI pi-stack is presented. Therefore, bay-tethered PBI dye Bis-PBI 1 was investigated by concentration-dependent UV/Vis spectroscopy in THF and toluene as well as by 2D-DOSY-NMR spectroscopy, ESI mass spectrometry and AFM measurements confirming that Bis-PBI 1 self-assembles exclusively into dimers with four closely pi-stacked PBI chromophores. Furthermore, with the aid of broadband fluorescence upconversion spectroscopy (FLUPS) ensuring broadband detection range and ultrafast time resolution at once, ultrafast Frenkel exciton relaxation and excimer formation dynamics in the PBI quadruple pi-stack within 1 ps was successfully investigated in cooperation with the group of Dongho Kim. Thus, it was possible to gain for the first time insights into the exciton dynamics within a highly defined synthetic dye aggregate beyond dimers. By analysing the vibronic line shape in the early-time transient fluorescence spectra in detail, it could be demonstrated that the Frenkel exciton is entirely delocalized along the quadruple stack after photoexcitation and immediately loses its coherence followed by the formation of the excimer state. In Chapter 5 four well-defined Bis-PBI folda-dimers Bis-PBIs 2-4 were introduced, where linker units of different length (r < 7 Å) and steric demand were used to gain distinct PBI dye assemblies in the folded state. Structural elucidation based on in-depth UV/Vis, CD and fluorescence experiments in combination with 1D and 2D NMR studies reveals a stacking of the two PBI chromophores upon folding, where geometry-optimized structures obtained from DFT calculations suggest only slightly different arrangements of the PBI units enforced by the distinct spacer moieties. With the resulting optical signatures of Bis-PBIs 2-4 ranging from conventional Hj-type to monomer like absorption features, the first experimental proof of a PBI-based “null-aggregate” could be presented, in which long- and short-range exciton coupling fully compensate each other. Hence, the insights of this chapter pinpoint the importance of charge-transfer mediated short-range exciton coupling that can significantly influence the properties of pi-stacked PBI chromophores In the last part of this thesis (Chapter 6), spacer-controlled self-assembly of four bay-linked Bis-PBI dyes Bis-PBIs 5-8 into well-defined supramolecular architectures was investigated, where the final aggregate structures are substantially defined by the nature of the used spacer units. By systematically extending the backbone length from 7 to 15 Å defining the inter-planar distance between the tethered chromophores, different assemblies from defined quadruple PBI pi-stacks to larger oligomeric pi-stacks could be gained upon aggregation. In conclusion, the synthesis of nine covalently linked PBI dyes in combination with a detailed investigation of their spacer-mediated self-assembly behaviour in solution concerning structure-properties-relationships was presented within this thesis. The results confirm a strong exciton coupling in different types of Bis-PBI architectures e.g. folda-dimers or highly defined quadruple pi-stacks, which significantly influences their optical properties upon self-assembly. N2 - Supramolekulare Selbstorganisationsprozesse von Perylenbisimid-(PBI)-Farbstoffen über nichtkovalente Kräfte führen zu einer Vielzahl unterschiedlicher PBI-Aggregatstrukturen welche sich in ihren einzigartigen optischen und funktionellen Eigenschaften unterscheiden. Diese Eigenschaften können bereits durch leichte strukturelle Veränderungen der gebildeten supramolekularen Strukturen drastisch beeinflusst werden (Kapitel 2.1), was die kontrollierte Selbstassemblierung von PBI-Farbstoffen zu einem zentralen Punkt aktueller Forschungsarbeiten macht. Dadurch soll es ermöglicht werden, innovative Materialien zu generieren, welche ein hohes Potenzial für unterschiedlichste Anwendungen aufzeigen, wie z.B. im Bereich der organischen Elektronik oder Photovoltaik. Da PBI-Farbstoffe eine starke Tendenz zur Bildung ausgedehnter Aggregatstrukturen aufweisen (Kapitel 2.2), war das Ziel dieser Arbeit, kleine, hoch-definierte PBI-Stapel zu generieren, was über die kontrollierte Steuerung ihres Aggregationsverhaltens ermöglicht werden sollte. Kapitel 2.3 gibt dabei einen Überblick über die hierfür in der Literatur verwendeten Strategien. Dabei konnte gezeigt werden, dass vor allem eine intra- bzw. intermolekulare Organisation von kovalent-verknüpften Bis-PBI-Farbstoffen herangezogen wird, um die Anzahl der PBI-Chromophore innerhalb des Aggregates zu limitieren. Dies konnte unter anderem durch eine sorgfältige Auswahl der verwendeten Linker-Einheiten realisiert werden, vor allem hinsichtlich ihrer Länge und Flexibilität. Durch den Einsatz von UV/Vis-, Fluoreszenz- und NMR-Spektroskopie kann ein eingehender Vergleich der molekularen und optischen Eigenschaften der Farbstoffe in Lösung sowohl im monomeren als auch im aggregierten Zustand durchgeführt werden. So konnte gezeigt werden, dass Linker-Einheiten, welche zwei PBI-Chromophore mit einem interplanaren Abstand von r < 7 Å vororganisieren, zu einer intramolekularen Faltung der Bis-PBI-Farbstoffe führen, wohingegen Linker-Einheiten mit einer Länge zwischen 7 - 11 Å eine intermolekulare Selbstorganisation der jeweiligen Bis-PBI-Farbstoffe begünstigen. Gewährleistet die verwendete Linker-Einheit einen interplanaren Abstand r > 14 Å zwischen den beiden PBI-Einheiten, so kommt es zur Erzeugung größerer, oligomerer PBI-Farbstoff-Stapel. Im ersten Teil dieser Arbeit (Kapitel 4) wurde die Exzitonen-Kopplung in einem hochdefinierten PBI-Viererstapel untersucht. Zu diesem Zweck wurde Bis-PBI 1 synthetisiert, dessen Aggregationsverhalten anschließend mittels konzentrationsabhängiger UV/Vis-Spektroskopie in THF und Toluol sowie mittels 2D-DOSY-NMR-Spektroskopie, ESI-Massenspektrometrie und AFM-Messungen ermittelt werden konnte. Dadurch konnte die intermolekulare Dimerisierung von Bis-PBI 1 und damit die Ausbildung hoch-definierter PBI-Viererstapel nach erfolgter Aggregation bestätigt werden. In Zusammenarbeit mit der Gruppe von Dongho Kim konnten weiterhin mittels Femtosekunden-Breitband-Fluoreszenz-Aufkonversions-Spektroskopie (FLUPS) erstmals Einblicke in die Exzitonendynamik innerhalb eines hoch definierten synthetischen Farbstoffaggregats jenseits von Dimeren gewonnen werden. Durch die detaillierte Analyse der vibronischen Linienform der frühen transienten Fluoreszenzspektren konnte gezeigt werden, dass das anfänglich gebildete Frenkel-Exciton nach erfolgter Anregung vollständig entlang des gesamten Viererstaples delokalisiert ist. Der eindeutige Nachweis des initialen, vollständig delokalisierten Frenkel-Exziton-Zustandes und seiner Lokalisation, stellen wichtige Ergebnisse dieser Studie dar Der zweite Teil dieser Arbeit (Kapitel 5) befasste sich mit der Einführung von vier hoch-definierten Bis-PBI-Folda-Dimeren Bis-PBI 2-4, für deren Synthese Linker-Einheiten unterschiedlicher Länge (r < 7 Å) und Flexibilität verwendet wurden. So konnte jeweils eine leicht variierende Anordnung der PBI-Chromophore im gefalteten Zustand generiert werden. Durch die Strukturaufklärung auf Basis von eingehenden UV/Vis-, CD-, Fluoreszenz- und 1D- und 2D-NMR-Studien konnte für alle Farbstoffe Bis-PBIs 2-4 die Faltung zu diskreten pi-Stapeln gezeigt werden. Die aus DFT-Berechnungen gewonnenen geometrieoptimierten Strukturen lassen nur geringfügig unterschiedliche Anordnungen der PBI-Farnstoffe erkennen, welche durch die verschiedenen Linker-Einheiten verursacht werden. Durch die resultierenden optischen Signaturen der Folda-Dimere Bis-PBIs 2-4, welche vom konventionellen Hj-Aggregat bis hin zu monomerenähnlichen Absorptionsmerkmalen reichen, konnte erstmals der experimentelle Nachweis eines PBI-basierten "Null-Aggregats" erbracht werden, bei dem sich JCoul und JCT vollständig gegenseitig kompensieren. Die Erkenntnisse dieses Kapitels verdeutlichen daher den erheblichen Einfluss der sogenannte kurzreichweitigen Exzitonen-Kopplung JCT auf die optischen Eigenschaften von PBI-Aggregaten. Im letzten Teil dieser Arbeit (Kapitel 6) wurden die Selbstorganisationsprozesse in klar definierten supramolekularen Aggregatstrukturen untersucht. Durch die systematische Verlängerung der Linker-Einheiten von 7 auf 15 Å, konnten durch Selbstorganisation unterschiedliche Aggregatstrukturen von hochdefinierten PBI-Viererstapeln bis hin zu längeren PBI-Oligomeren generiert werden. Zusammenfassend wurde in dieser Arbeit eine detaillierte Übersicht des Selbstorganisationsverhaltens von neun kovalent verknüpften Bis-PBI-Farbstoffen vorgestellt, welche anschließend hinsichtlich ihrer Struktur-Eigenschafts-Beziehung untersucht wurden. Die Ergebnisse bestätigen eine starke Excitonen-Kopplung in verschiedenen Bis-PBI-Aggregaten wie z.B. PBI-Folda-Dimeren oder hochdefinierten PBI-Viererstapeln, welche die optischen Eigenschaften der Farbstoffsysteme im aggregierten Zustand signifikant beeinflusst. KW - Supramolekulare Chemie KW - Perylenderivate KW - Selbstorganisation KW - perylene bisimide dimers KW - folda-dimer KW - null-aggregate KW - exciton dynamics KW - short-range JCT-coupling KW - spacer-controlled self-assembly KW - Elektronentransfer KW - Farbstoff KW - NMR-Spektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173005 ER - TY - THES A1 - Geiger, Lars T1 - The versatile use of Guanidiniocarbonylpyrroles : from self-assembly to peptide recognition T1 - Der vielseitige Einsatz von Guanidiniocarbonylpyrrolen: Von der Selbstassoziation bis zur Peptide-Erkennung N2 - Die vorliegende Arbeit gliedert sich in zwei Themenschwerpunkte. Ein supramolekulares Projekt beinhaltete die Entwicklung von neuen flexiblen, selbst-aggregierenden Zwitterionen als Bausteine für supramolekulare Polymere. In einem zweiten bioorganischem Teil bestand das Ziel darin, Rezeptoren für Aminosäuren und Dipeptide in Wasser zu entwickeln. Beide Projekte basieren auf dem Guanidiniocarbonylpyrrol als effizientes Bindungsmotiv für die Komplexierung von Carboxylaten in wässrigen Lösungen. Eine notwendige Voraussetzung für die Realisierung dieser Projekte war jedoch zunächst die Entwicklung einer allgemeinen, effizienten und milden Synthese für Guanidiniocarbonylpyrrole. Die bei der zuvor verwendeten Methode aggressiven Reaktionsbedingungen und die problematische Aufreinigung verhinderten eine größere Anwendung dieses Bindungsmotivs in bioorganischen und supramolekularen Projekten. Im Rahmen dieser Arbeit gelang es mir erfolgreich eine neue Syntheseroute zu entwickeln. Hierbei wurde mono-tBoc-Guanidine mit dem Benzylester mittels PyBOP gekuppelt und nach Entschützung der Benzylschutzgruppe wurde die zentrale Zwischenstufe für die weiteren Synthesen, die tBoc-geschützte Guanidinocarbonylpyrrol-Säure erhalten. Durch diese neuartige Synthese war es möglich, eine Reihe von flexiblen Zwitterionen 3-6 herzustellen und deren Selbst-Aggregation und den Einfluß der Kettenlänge und somit Flexibilität der Alkylkette auf Struktur und Stabilität der gebildeten Aggregate in Lösung sowie auch in der Gasphase zu untersuchen. In DMSO deuten NMR-Verdünnungsreihen darauf hin, dass die flexiblen Zwitterionen mit n = 1, 3 und 5 oligomere Strukturen ausbilden. Im Falle von n = 1 werden hoch stabile helicale und Nanometer große Aggregate in der gebildet. In den Gasphasen-Studien wurde die Stabilität und Zerfallskinetik einer Reihe von Natriumaddukten der Dimere von n = 2, 3 und 5 untersucht. Dieses gelang durch die Methode der „infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry“ (IRMPD-FT-ICR MS). Solche Studien ermöglichen möglicherweise in Zukunft das gezielte Design von supramolekularen Bausteinen. Der bioorganische Teil meiner Arbeit setzte sich aus drei Einzelprojekten zusammen. So synthetisierte ich durch eine fünfstufige Synthesesequenz vier neue Arginin-Analoga, die in Zukunft als Ersatz für Arginin in Peptide eingebaut werden können. Als Testreaktion für die Eignung dieser Verbindungen in einer Festphasenpeptidsynthese, wurde ein Tripetid Ala-AA1-Val (AA: Arginin-Analogon) mit einem eingebauten Arginin-Analogon erfolgreich hergestellt. In einem zweiten Projekt habe ich den Einfluß einer zusätzlichen ionischen Wechselwirkung in unserem Bindungsmotiv untersucht. Dazu wurde ein zweifach-kationischer Rezeptor und der dreifach-geladenen Rezeptor synthetisiert und physikalisch-organisch ihre Bindungseigenschaften mit Hilfe von NMR-Titrationsexperimenten gegen eine Reihe von Aminosäuren untersucht. Der dreifach-kationische Rezeptor 11 zeigte hierbei herausragende Bindungseigenschaften und war um ca. den Faktor 100 besser als für die bisher bekannten Guanidiniocarbonylpyrrole. Die Assoziationskonstanten waren auch fast reinem Wasser mit bis zu Kass = 2000 noch bemerkenswert hoch. Im dritten Projekt habe ich einen de-novo entwickelten Rezeptor für C-terminale Dipeptide in einer beta-Faltblatt Struktur entwickelt.Dieser Rezeptor wurde mittels NMR and UV-Titrationen untersucht. In 40 % Wasser/ 60 % DMSO waren die Bindungskonstanten zu hoch um überhaupt quantifiziert zu werden. Deshalb wurden die Bindungseigenschaften des Rezeptors mittels UV Titrationen in einer Mischung aus 90 % Wasser mit 10 % DMSO gegen eine Reihe von Dipeptiden und Aminosäuren getestet. Die Bindungsdaten zeigen, dass Rezeptor Dipeptide mit ausgezeichneten Bindungskonstanten (Kass > 10000 M-1) komplexiert. Im Gegensatz dazu bindet der Rezeptor 12 Aminosäuren um den Faktor zehn schlechter (Kass > 1000 M-1). Die Komplexstabilität nimmt hierbei in Abhängigkeit von der Seitenkette des Dipeptids in der Reihe Gly < Ala < Val zu, was sich mit der abnehmenden Flexibilität und zunehmenden Hydrophobizität der Seitenkette erklären lässt. Diese Eigenschaften machen den Rezeptor 12 zu dem besten bisher bekannten Dipeptidrezeptor in wässrigen Lösungen. Innerhalb meiner Arbeit gelang es mir somit, nicht nur eine essentiell wichtige, milde und effiziente Synthese für Guanidinocarbonylpyrrole zu entwickeln, sondern es gelang mir ebenso ein neues Bindungsmotiv für die Komplexierung von Aminosäuren in Wasser zu entwickeln. Zusätzlich konnte noch der Dipeptidrezeptor erfolgreich synthetisiert und untersucht werden. Mit Bindungskonstanten für von Kass > 10000 M-1 ist er der derzeit beste Dipeptidrezeptor in wässriger Lösung. N2 - The present thesis encompasses two parts. The first supramolecular part focuses on the development of new flexible self-assembling zwitterions as building blocks for supramolecular polymers. In the second part, the aim was to develop bioorganic receptors for amino acids and dipeptides in aqueous media. Both research projects are based on the guanidiniocarbonyl pyrrole 1 as a new efficient binding motif for the complexation of carboxylates in polar solution.A necessary requirement for the realization of these research projects was to develop an efficient and mild synthetic approach for the cationic guanidiniocarbonyl pyrroles in general. The harsh reaction conditions of the previously used method and the problematic purification of the cationic guanidinocarbonyl pyrroles so far prevented a more extensive exploration in bioorganic and supramolecular research. In the course of this work I successfully developed a new synthesis starting with mono tBoc-protected guanidine that was coupled with a benzyl protected pyrrole carboxylic acid. After deprotection of the benzyl group, a key intermediate in the newly developed synthesis, the tBoc-protected guanidinocarbonyl pyrrole acid, was obtained. This new, mild and extremely efficient synthetic approach for the introduction of acyl guanidines is now the standard procedure in our group for the preparation of both solution and solid-phase guanidiniocarbonyl pyrroles. With this facile method at hand, a new class of flexible zwitterions, in which a carboxylate is linked via an alkyl chain to a guanidiniocarbonyl pyrrole cation was synthesized. The self-aggregation and the influence of the length and therefore flexibility of the alkyl spacer on the structure and stability of the formed aggregates were studied in solution and gas phase. In solution the aggregation was studied by NMR-dilution experiments in DMSO which suggest that flexible zwitterions with n = 1, 3 and 5 form oligomers. For n = 1, highly stable helical aggregates with nanometer size are formed. In the gas phase studies the stability and the fragmentation kinetics of a series of sodiated dimeric zwitterions with n = 2, 3 and 5 were investigated. This was done by infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry (IRMPD-FT-ICR-MS). These kinds of studies can be used in the future for a more directed design of supramolecular building blocks The bioorganic research part comprises three different projects. In a first project I synthesized four new arginine analogues which can be implemented in peptides as a substitute for arginine. Therefore, I developed the new multi-step synthesis shown below for these arginine analogues. As a test for their application in normal solid phase synthesis, I successfully prepared a tripeptide sequence Ala-AA1-Val (AA: arginine analogue. In a second project I studied the influence of additional ionic interactions within our binding motif. I synthesized a di-cationic and a tris-cationic receptor and evaluated the binding properties via NMR titration experiments against a variety of amino acids. Especially, the tris-cationic receptor was capable to strongly complex amino acids. The association constants were about a factor of 100 higher than those for the guanidiniocarbonyl pyrroles known so far. Even in 90 %water/10 % DMSO the association constants determined by NMR titration were extremely high with values around Kass = 2000 M-1. In the third project I developed a de-novo designed receptor for C-terminal dipeptides in a beta-sheet conformation based on molecular calculations. This receptor was studied in NMR and also UV titration experiments. In 40 % water/ 60 % DMSO the association constants were too strong to be measured by NMR titration experiments. Therefore, the complexation properties of 12 were studied by UV titration in water (with 10 % DMSO added for solubility reasons) with various dipeptides and amino acids as substrates. The data show that 12 binds dipeptides very efficiently even in water with association constants Kass > 10000 M-1, making 12 one of the most effective dipeptide receptors known so far. In contrast to that, simple amino acids are bound up to ten times less efficiently (Kass > 1000 M-1) than dipeptides. In the series of dipeptides studied the complex stability increases depending on the side chains present in the order Gly < Ala < Val which is a result of the decreasing flexibility of the peptide and the increasing hydrophobicity of the side chains. The binding properties of this receptor are superior to any other dipeptide receptor reported so far. Within my thesis I have not only developed an essential, mild and efficient synthetic approach for guanidiniocarbonyl pyrroles in general, but also a new binding motif for the complexation of amino acids 15, 11 and in addition a dipeptide receptor 12 that is superior to all dipeptides receptors known so far. KW - Guanidinderivate KW - Supramolekulare Chemie KW - Selbstassoziation KW - Bioorganik KW - supramolekulare Chemie KW - molekulare Erkennung KW - Self-Assembly KW - Bioorganic chemistry KW - supramolecular chemistry KW - molecular recognition Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9272 ER -