TY - JOUR A1 - Wagner, Michael A1 - Sadek, Mirna S. A1 - Dybkova, Nataliya A1 - Mason, Fleur E. A1 - Klehr, Johann A1 - Firneburg, Rebecca A1 - Cachorro, Eleder A1 - Richter, Kurt A1 - Klapproth, Erik A1 - Kuenzel, Stephan R. A1 - Lorenz, Kristina A1 - Heijman, Jordi A1 - Dobrev, Dobromir A1 - El-Armouche, Ali A1 - Sossalla, Samuel A1 - Kämmerer, Susanne T1 - Cellular mechanisms of the anti-arrhythmic effect of cardiac PDE2 overexpression JF - International Journal of Molecular Sciences N2 - Background: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to β-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. Methods: Cellular arrhythmia, ion currents, and Ca\(^{2+}\)-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. Results: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in I\(_{CaL}\) seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in I\(_{NaL}\) and Ca\(^{2+}\)-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. Conclusion: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF. KW - PDE2 KW - arrhythmia KW - CaMKII KW - heart failure Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285888 SN - 1422-0067 VL - 22 IS - 9 ER - TY - JOUR A1 - Werner, Rudolf A. T1 - Editorial: Cardiac Innervation Imaging as a Risk Stratification Tool for Potential Device Therapy Candidates JF - Journal of Nuclear Cardiology N2 - As a scintigraphic approach evaluating cardiac nerve integrity, \(^{123}\)I-metaiodobenzylguanidine (123I-mIBG) has been recently Food and Drug Administration approved. A great deal of progress has been made by the prospective ADMIRE-HF trial, which primarily demonstrated the association of denervated myocardium assessed by \(^{123}\)I-mIBG and cardiac events. However, apart from risk stratification, myocardial nerve function evaluated by molecular imaging should also be expanded to other clinical contexts, in particular to guide the referring cardiologist in selecting appropriate candidates for specific therapeutic interventions. In the present issue of the Journal of Nuclear Cardiology, the use of 123I-mIBG for identifying cardiomyopathy patients, which would most likely not benefit from ICD due low risk of arrhythmias, is described. If we aim to deliver on the promise of cardiac innervation imaging as a powerful tool for risk stratification in a manner similar to nuclear oncology, studies such as the one reviewed here may imply an important step to lay the proper groundwork for a more widespread adoption in clinical practice. KW - SPECT KW - SPECT KW - myocardial nerve KW - 123I-metaiodobenzylguanidine KW - 123I-mIBG KW - cardiac nerve KW - ICD KW - arrhythmia KW - cardiac innervation imaging Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168465 UR - https://rdcu.be/970i SN - 1071-3581 N1 - SharedIt-Link zur Publikation: https://rdcu.be/970i N1 - This is a post-peer-review, pre-copyedit version of an article published in Journal of Nuclear Cardiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s12350-018-01475-0 ER - TY - JOUR A1 - Shemer, Yuval A1 - Mekies, Lucy N. A1 - Ben Jehuda, Ronen A1 - Baskin, Polina A1 - Shulman, Rita A1 - Eisen, Binyamin A1 - Regev, Danielle A1 - Arbustini, Eloisa A1 - Gerull, Brenda A1 - Gherghiceanu, Mihaela A1 - Gottlieb, Eyal A1 - Arad, Michael A1 - Binah, Ofer T1 - Investigating LMNA-related dilated cardiomyopathy using human induced Pluripotent Stem Cell-derived cardiomyocytes JF - International Journal of Molecular Sciences N2 - LMNA-related dilated cardiomyopathy is an inherited heart disease caused by mutations in the LMNA gene encoding for lamin A/C. The disease is characterized by left ventricular enlargement and impaired systolic function associated with conduction defects and ventricular arrhythmias. We hypothesized that LMNA-mutated patients' induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) display electrophysiological abnormalities, thus constituting a suitable tool for deciphering the arrhythmogenic mechanisms of the disease, and possibly for developing novel therapeutic modalities. iPSC-CMs were generated from two related patients (father and son) carrying the same E342K mutation in the LMNA gene. Compared to control iPSC-CMs, LMNA-mutated iPSC-CMs exhibited the following electrophysiological abnormalities: (1) decreased spontaneous action potential beat rate and decreased pacemaker current (I\(_f\)) density; (2) prolonged action potential duration and increased L-type Ca\(^{2+}\) current (I\(_{Ca,L}\)) density; (3) delayed afterdepolarizations (DADs), arrhythmias and increased beat rate variability; (4) DADs, arrhythmias and cessation of spontaneous firing in response to β-adrenergic stimulation and rapid pacing. Additionally, compared to healthy control, LMNA-mutated iPSC-CMs displayed nuclear morphological irregularities and gene expression alterations. Notably, KB-R7943, a selective inhibitor of the reverse-mode of the Na\(^+\)/Ca\(^{2+}\) exchanger, blocked the DADs in LMNA-mutated iPSC-CMs. Our findings demonstrate cellular electrophysiological mechanisms underlying the arrhythmias in LMNA-related dilated cardiomyopathy. KW - LMNA KW - dilated cardiomyopathy KW - iPSC-CMs KW - electrophysiology KW - arrhythmia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285673 SN - 1422-0067 VL - 22 IS - 15 ER - TY - JOUR A1 - Eiringhaus, Jörg A1 - Wünsche, Christoph M. A1 - Tirilomis, Petros A1 - Herting, Jonas A1 - Bork, Nadja A1 - Nikolaev, Viacheslav O. A1 - Hasenfuss, Gerd A1 - Sossalla, Samuel A1 - Fischer, Thomas H. T1 - Sacubitrilat reduces pro‐arrhythmogenic sarcoplasmic reticulum Ca\(^{2+}\) leak in human ventricular cardiomyocytes of patients with end‐stage heart failure JF - ESC Heart Failure N2 - Aims Inhibition of neprilysin and angiotensin II receptor by sacubitril/valsartan (Val) (LCZ696) reduces mortality in heart failure (HF) patients compared with sole inhibition of renin–angiotensin system. Beneficial effects of increased natriuretic peptide levels upon neprilysin inhibition have been proposed, whereas direct effects of sacubitrilat (Sac) (LBQ657) on myocardial Ca\(^{2+}\) cycling remain elusive. Methods and results Confocal microscopy (Fluo‐4 AM) was used to investigate pro‐arrhythmogenic sarcoplasmic reticulum (SR) Ca\(^{2+}\) leak in freshly isolated murine and human ventricular cardiomyocytes (CMs) upon Sac (40 μmol/L)/Val (13 μmol/L) treatment. The concentrations of Sac and Val equalled plasma concentrations of LCZ696 treatment used in PARADIGM‐HF trial. Epifluorescence microscopy measurements (Fura‐2 AM) were performed to investigate effects on systolic Ca\(^{2+}\) release, SR Ca\(^{2+}\) load, and Ca\(^{2+}\)‐transient kinetics in freshly isolated murine ventricular CMs. The impact of Sac on myocardial contractility was evaluated using in toto‐isolated, isometrically twitching ventricular trabeculae from human hearts with end‐stage HF. Under basal conditions, the combination of Sac/Val did not influence diastolic Ca\(^{2+}\)‐spark frequency (CaSpF) nor pro‐arrhythmogenic SR Ca\(^{2}\) leak in isolated murine ventricular CMs (n CMs/hearts = 80/7 vs. 100/7, P = 0.91/0.99). In contrast, Sac/Val treatment reduced CaSpF by 35 ± 9% and SR Ca\(^{2+}\) leak by 45 ± 9% in CMs put under catecholaminergic stress (isoproterenol 30 nmol/L, n = 81/7 vs. 62/7, P < 0.001 each). This could be attributed to Sac, as sole Sac treatment also reduced both parameters by similar degrees (reduction of CaSpF by 57 ± 7% and SR Ca2+ leak by 76 ± 5%; n = 101/4 vs. 108/4, P < 0.01 each), whereas sole Val treatment did not. Systolic Ca2+ release, SR Ca\(^{2+}\) load, and Ca\(^{2+}\)‐transient kinetics including SERCA activity (k\(_{SERCA}\)) were not compromised by Sac in isolated murine CMs (n = 41/6 vs. 39/6). Importantly, the combination of Sac/Val and Sac alone also reduced diastolic CaSpF and SR Ca\(^{2+}\) leak (reduction by 74 ± 7%) in human left ventricular CMs from patients with end‐stage HF (n = 71/8 vs. 78/8, P < 0.05 each). Myocardial contractility of human ventricular trabeculae was not acutely affected by Sac treatment as the developed force remained unchanged over a time course of 30 min (n trabeculae/hearts = 3/3 vs. 4/3). Conclusion This study demonstrates that neprilysin inhibitor Sac directly improves Ca\(^{2+}\) homeostasis in human end‐stage HF by reducing pro‐arrhythmogenic SR Ca\(^{2+}\) leak without acutely affecting systolic Ca\(^{2+}\) release and inotropy. These effects might contribute to the mortality benefits observed in the PARADIGM‐HF trial. KW - heart failure KW - entresto KW - Neprilysin inhibition KW - Ca cycling KW - SR Ca leak KW - arrhythmia Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218479 VL - 7 IS - 5 SP - 2992 EP - 3002 ER -