TY - JOUR A1 - Dietl, Sebastian A1 - Schwinn, Stefanie A1 - Dietl, Susanne A1 - Riedl, Simone A1 - Deinlein, Frank A1 - Rutkowski, Stefan A1 - von Bueren, Andre O. A1 - Krauss, Jürgen A1 - Schweitzer, Tilmann A1 - Vince, Giles H. A1 - Picard, Daniel A1 - Eyrich, Matthias A1 - Rosenwald, Andreas A1 - Ramaswamy, Vijay A1 - Taylor, Michael D. A1 - Remke, Marc A1 - Monoranu, Camelia M. A1 - Beilhack, Andreas A1 - Schlegel, Paul G. A1 - Wölfl, Matthias T1 - MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties JF - BMC Cancer N2 - Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma. KW - cancer stem cells KW - anaplastic medulloblastoma KW - group 3 KW - orthotopic xenograft KW - animal model KW - brain tumor KW - children Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145877 VL - 16 IS - 115 ER - TY - JOUR A1 - Read, Hannah M. A1 - Mills, Grant A1 - Johnson, Sarah A1 - Tsai, Peter A1 - Dalton, James A1 - Barquist, Lars A1 - Print, Cristin G. A1 - Patrick, Wayne M. A1 - Wiles, Siouxsie T1 - The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium JF - PeerJ N2 - Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments. KW - bioluminescence KW - lux KW - luciferase KW - biophotonic imaging KW - bioluminescence imaging KW - enteric pathogens KW - animal model KW - reporter genes KW - phenotypic microarray KW - biolog Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166576 VL - 4 IS - e2130 ER -