TY - JOUR A1 - Fischer, Thomas A1 - Hartmann, Oliver A1 - Reissland, Michaela A1 - Prieto-Garcia, Cristian A1 - Klann, Kevin A1 - Pahor, Nikolett A1 - Schülein-Völk, Christina A1 - Baluapuri, Apoorva A1 - Polat, Bülent A1 - Abazari, Arya A1 - Gerhard-Hartmann, Elena A1 - Kopp, Hans-Georg A1 - Essmann, Frank A1 - Rosenfeldt, Mathias A1 - Münch, Christian A1 - Flentje, Michael A1 - Diefenbacher, Markus E. T1 - PTEN mutant non-small cell lung cancer require ATM to suppress pro-apoptotic signalling and evade radiotherapy JF - Cell & Bioscience N2 - Background Despite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy. Results We demonstrate that loss of PTEN led to altered expression of transcriptional programs which directly regulate therapy resistance, resulting in establishment of radiation resistance. While PTEN-deficient tumor cells were not dependent on DNA-PK for IR resistance nor activated ATR during IR, they showed a significant dependence for the DNA damage kinase ATM. Pharmacologic inhibition of ATM, via KU-60019 and AZD1390 at non-toxic doses, restored and even synergized with IR in PTEN-deficient human and murine NSCLC cells as well in a multicellular organotypic ex vivo tumor model. Conclusion PTEN tumors are addicted to ATM to detect and repair radiation induced DNA damage. This creates an exploitable bottleneck. At least in cellulo and ex vivo we show that low concentration of ATM inhibitor is able to synergise with IR to treat PTEN-deficient tumors in genetically well-defined IR resistant lung cancer models. KW - PTEN KW - ATM KW - IR KW - NSCLC KW - radiotherapy KW - cancer KW - DNA-PK KW - PI3K Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299865 SN - 2045-3701 VL - 12 ER - TY - JOUR A1 - Djuzenova, Cholpon S. A1 - Fiedler, Vanessa A1 - Memmel, Simon A1 - Katzer, Astrid A1 - Sisario, Dmitri A1 - Brosch, Philippa K. A1 - Göhrung, Alexander A1 - Frister, Svenja A1 - Zimmermann, Heiko A1 - Flentje, Michael A1 - Sukhorukov, Vladimir L. T1 - Differential effects of the Akt inhibitor MK-2206 on migration and radiation sensitivity of glioblastoma cells JF - BMC Cancer N2 - Background Most tumor cells show aberrantly activated Akt which leads to increased cell survival and resistance to cancer radiotherapy. Therefore, targeting Akt can be a promising strategy for radiosensitization. Here, we explore the impact of the Akt inhibitor MK-2206 alone and in combination with the dual PI3K and mTOR inhibitor PI-103 on the radiation sensitivity of glioblastoma cells. In addition, we examine migration of drug-treated cells. Methods Using single-cell tracking and wound healing migration tests, colony-forming assay, Western blotting, flow cytometry and electrorotation we examined the effects of MK-2206 and PI-103 and/or irradiation on the migration, radiation sensitivity, expression of several marker proteins, DNA damage, cell cycle progression and the plasma membrane properties in two glioblastoma (DK-MG and SNB19) cell lines, previously shown to differ markedly in their migratory behavior and response to PI3K/mTOR inhibition. Results We found that MK-2206 strongly reduces the migration of DK-MG but only moderately reduces the migration of SNB19 cells. Surprisingly, MK-2206 did not cause radiosensitization, but even increased colony-forming ability after irradiation. Moreover, MK-2206 did not enhance the radiosensitizing effect of PI-103. The results appear to contradict the strong depletion of p-Akt in MK-2206-treated cells. Possible reasons for the radioresistance of MK-2206-treated cells could be unaltered or in case of SNB19 cells even increased levels of p-mTOR and p-S6, as compared to the reduced expression of these proteins in PI-103-treated samples. We also found that MK-2206 did not enhance IR-induced DNA damage, neither did it cause cell cycle distortion, nor apoptosis nor excessive autophagy. Conclusions Our study provides proof that MK-2206 can effectively inhibit the expression of Akt in two glioblastoma cell lines. However, due to an aberrant activation of mTOR in response to Akt inhibition in PTEN mutated cells, the therapeutic window needs to be carefully defined, or a combination of Akt and mTOR inhibitors should be considered. KW - DNA damage KW - glioblastoma multiforme KW - histone H2AX KW - irradiation KW - migration KW - mTOR KW - PTEN KW - p53 KW - radiation sensitivity KW - wound healing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200290 VL - 19 ER - TY - JOUR A1 - Wieland, Annalena A1 - Strissel, Pamela L. A1 - Schorle, Hannah A1 - Bakirci, Ezgi A1 - Janzen, Dieter A1 - Beckmann, Matthias W. A1 - Eckstein, Markus A1 - Dalton, Paul D. A1 - Strick, Reiner T1 - Brain and breast cancer cells with PTEN loss of function reveal enhanced durotaxis and RHOB dependent amoeboid migration utilizing 3D scaffolds and aligned microfiber tracts JF - Cancers N2 - Background: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. Methods: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. Results: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. Conclusions: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy. KW - 3D tumor model KW - 3D microfiber KW - amoeboid cell migration KW - brain cancer KW - breast cancer KW - PTEN KW - RHO KW - ROCK KW - durotaxis KW - topotaxis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248443 SN - 2072-6694 VL - 13 IS - 20 ER -