TY - JOUR A1 - Gorlova, Anna A1 - Svirin, Evgeniy A1 - Pavlov, Dmitrii A1 - Cespuglio, Raymond A1 - Proshin, Andrey A1 - Schroeter, Careen A. A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana T1 - Understanding the role of oxidative stress, neuroinflammation and abnormal myelination in excessive aggression associated with depression: recent input from mechanistic studies JF - International Journal of Molecular Sciences N2 - Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions. KW - major depressive disorder (MDD) KW - aggression KW - neuroinflammation KW - oxidative stress KW - insulin receptor KW - myelination Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304917 SN - 1422-0067 VL - 24 IS - 2 ER - TY - JOUR A1 - Othman, Eman M. A1 - Naseem, Muhammed A1 - Awad, Eman A1 - Dandekar, Thomas A1 - Stopper, Helga T1 - The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells JF - PLoS One N2 - Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing. KW - DNA damage KW - apoptosis KW - oxidative stress KW - fluorescence recovery after photobleaching KW - lymphocytes KW - antioxidants KW - cell staining KW - cytokinins Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147983 VL - 11 IS - 12 ER - TY - JOUR A1 - Ferianec, Vladimír A1 - Fülöp, Matej A1 - Ježovičová, Miriam A1 - Radošinská, Jana A1 - Husseinová, Marta A1 - Feriancová, Michaela A1 - Radošinská, Dominika A1 - Barančík, Miroslav A1 - Muchová, Jana A1 - Hȍgger, Petra A1 - Ďuračková, Zdeňka T1 - The oak−wood extract Robuvit\(^®\) improves recovery and oxidative stress after hysterectomy: a randomized, double-blind, placebo-controlled pilot study JF - Nutrients N2 - Hysterectomy has a variety of medical indications and improves pre-operative symptoms but might compromise the quality of life during recovery due to symptoms such as fatigue, headache, nausea, depression, or pain. The aim of the present study was to determine the effect of a standardized extract from French oak wood (Quercus robur) containing at least 40% polyphenols of the ellagitannins class, Robuvit\(^®\), on convalescence and oxidative stress of women after hysterectomy. Recovery status was monitored with the SF-36 questionnaire. The supplementation with Robuvit\(^®\) (300 mg/day) during 4 weeks significantly improved general and mental health, while under placebo some items significantly deteriorated. Oxidative stress and enhancement of MMP–9 activity was significantly reduced by Robuvit\(^®\) versus placebo. After 8 weeks of intervention, the patients’ condition improved independently of the intervention. Our results suggest that the use of Robuvit\(^®\) as a natural supplement relieves post-operative symptoms of patients after hysterectomy and reduces oxidative stress. The study was registered with ID ISRCTN 11457040 (13/09/2019). KW - hysterectomy KW - Robuvit\(^®\) KW - oak wood extract KW - post-operative recovery KW - oxidative stress KW - matrix metalloproteinases KW - complementary medicine Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203265 SN - 2072-6643 VL - 12 IS - 4 ER - TY - JOUR A1 - Budde, Heidi A1 - Hassoun, Roua A1 - Tangos, Melina A1 - Zhazykbayeva, Saltanat A1 - Herwig, Melissa A1 - Varatnitskaya, Marharyta A1 - Sieme, Marcel A1 - Delalat, Simin A1 - Sultana, Innas A1 - Kolijn, Detmar A1 - Gömöri, Kamilla A1 - Jarkas, Muhammad A1 - Lódi, Mária A1 - Jaquet, Kornelia A1 - Kovács, Árpád A1 - Mannherz, Hans Georg A1 - Sequeira, Vasco A1 - Mügge, Andreas A1 - Leichert, Lars I. A1 - Sossalla, Samuel A1 - Hamdani, Nazha T1 - The interplay between S-glutathionylation and phosphorylation of cardiac troponin I and myosin binding protein C in end-stage human failing hearts JF - Antioxidants N2 - Oxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation. Here, we investigated the oxidative modifications of myofilament proteins, and their role in modulating cardiomyocyte function in end-stage human failing hearts. We found altered maximum Ca\(^{2+}\)-activated tension and Ca\(^{2+}\) sensitivity of force production of skinned single cardiomyocytes in end-stage human failing hearts compared to non-failing hearts, which was corrected upon treatment with reduced glutathione enzyme. This was accompanied by the increased oxidation of troponin I and myosin binding protein C, and decreased levels of protein kinases A (PKA)- and C (PKC)-mediated phosphorylation of both proteins. The Ca\(^{2+}\) sensitivity and maximal tension correlated strongly with the myofilament oxidation levels, hypo-phosphorylation, and oxidative stress parameters that were measured in all the samples. Furthermore, we detected elevated titin-based myocardial stiffness in HF myocytes, which was reversed by PKA and reduced glutathione enzyme treatment. Finally, many oxidative stress and inflammation parameters were significantly elevated in failing hearts compared to non-failing hearts, and corrected upon treatment with the anti-oxidant GSH enzyme. Here, we provide evidence that the altered mechanical properties of failing human cardiomyocytes are partially due to phosphorylation, S-glutathionylation, and the interplay between the two post-translational modifications, which contribute to the development of heart failure. KW - myofilament proteins KW - oxidative stress KW - inflammation KW - phosphorylation KW - S-glutathionylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242701 SN - 2076-3921 VL - 10 IS - 7 ER - TY - JOUR A1 - Leonhardt, Ines A1 - Spielberg, Steffi A1 - Weber, Michael A1 - Albrecht-Eckardt, Daniela A1 - Bläss, Markus A1 - Claus, Ralf A1 - Barz, Dagmar A1 - Scherlach, Kirstin A1 - Hertweck, Christian A1 - Löffler, Jürgen A1 - Hünniger, Kerstin A1 - Kurzai, Oliver T1 - The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity JF - mBio N2 - Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-\(\alpha\)] and macrophage inflammatory protein 1 alpha [MIP-1 \(\alpha\)]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. KW - human dendritic cells KW - Pseudomonas aeruginosa KW - induced apoptosis KW - cytokine production KW - biofilm formation KW - Candida albicans KW - mouse model KW - systemic candidiasis KW - oxidative stress KW - carcinoma cells Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143756 VL - 6 IS - 2 ER - TY - JOUR A1 - Radermacher, Kim A. A1 - Wingler, Kirstin A1 - Kleikers, Pamela A1 - Altenhöfer, Sebastian A1 - Hermans, Johannes J. R. A1 - Kleinschnitz, Christoph A1 - Schmidt, Harald H. H. W. T1 - The 1027th target candidate in stroke: Will NADPH oxidase hold up? JF - Experimental and Translational Stroke Medicine N2 - As recently reviewed, 1026 neuroprotective drug candidates in stroke research have all failed on their road towards validation and clinical translation, reasons being quality issues in preclinical research and publication bias. Quality control guidelines for preclinical stroke studies have now been established. However, sufficient understanding of the underlying mechanisms of neuronal death after stroke that could be possibly translated into new therapies is lacking. One exception is the hypothesis that cellular death is mediated by oxidative stress. Oxidative stress is defined as an excess of reactive oxygen species (ROS) derived from different possible enzymatic sources. Among these, NADPH oxidases (NOX1-5) stand out as they represent the only known enzyme family that has no other function than to produce ROS. Based on data from different NOX knockout mouse models in ischemic stroke, the most relevant isoform appears to be NOX4. Here we discuss the state-of-the-art of this target with respect to stroke and open questions that need to be addressed on the path towards clinical translation. KW - NADPH oxidases (NOX) KW - stroke therapy KW - oxidative stress Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124197 VL - 4 IS - 11 ER - TY - JOUR A1 - Magliocca, Giorgia A1 - Mone, Pasquale A1 - Di Iorio, Biagio Raffaele A1 - Heidland, August A1 - Marzocco, Stefania T1 - Short-chain fatty acids in Chronic Kidney Disease: focus on inflammation and oxidative stress regulation JF - International Journal of Molecular Sciences N2 - Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress. KW - chronic kidney disease KW - short-chain fatty acids KW - oxidative stress KW - inflammation KW - uremic toxins Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284587 SN - 1422-0067 VL - 23 IS - 10 ER - TY - JOUR A1 - Bankoglu, Ezgi Eyluel A1 - Tschopp, Oliver A1 - Schmitt, Johannes A1 - Burkard, Philipp A1 - Jahn, Daniel A1 - Geier, Andreas A1 - Stopper, Helga T1 - Role of PTEN in Oxidative Stress and DNA Damage in the Liver of Whole-Body Pten Haplodeficient Mice JF - PLoS One N2 - Type 2 diabetes (T2DM) and obesity are frequently associated with non-alcoholic fatty liver disease (NAFLD) and with an elevated cancer incidence. The molecular mechanisms of carcinogenesis in this context are only partially understood. High blood insulin levels are typical in early T2DM and excessive insulin can cause elevated reactive oxygen species (ROS) production and genomic instability. ROS are important for various cellular functions in signaling and host defense. However, elevated ROS formation is thought to be involved in cancer induction. In the molecular events from insulin receptor binding to genomic damage, some signaling steps have been identified, pointing at the PI3K/AKT pathway. For further elucidation Phosphatase and Tensin homolog (Pten), a tumour suppressor phosphatase that plays a role in insulin signaling by negative regulation of PI3K/AKT and its downstream targets, was investigated here. Dihydroethidium (DHE) staining was used to detect ROS formation in immortalized human hepatocytes. Comet assay and micronucleus test were performed to investigate genomic damage in vitro. In liver samples, DHE staining and western blot detection of HSP70 and HO-1 were performed to evaluate oxidative stress response. DNA double strand breaks (DSBs) were detected by immunohistostaining. Inhibition of PTEN with the pharmacologic inhibitor VO-OHpic resulted in increased ROS production and genomic damage in a liver cell line. Knockdown of Pten in a mouse model yielded increased oxidative stress levels, detected by ROS levels and expression of the two stress-proteins HSP70 and HO-1 and elevated genomic damage in the liver, which was significant in mice fed with a high fat diet. We conclude that PTEN is involved in oxidative stress and genomic damage induction in vitro and that this may also explain the in vivo observations. This further supports the hypothesis that the PI3K/AKT pathway is responsible for damaging effects of high levels of insulin. KW - insulin KW - mouse models DNA damage KW - oxidative stress KW - mammalian genomics KW - fatty liver KW - micronuclei KW - insulin signaling Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146970 VL - 11 IS - 11 ER - TY - JOUR A1 - Remes, Bernhard A1 - Berghoff, Bork A. A1 - Förstner, Konrad U. A1 - Klug, Gabriele T1 - Role of oxygen and the OxyR protein in the response to iron limitation in Rhodobacter sphaeroides JF - BMC Genomics N2 - Background: High intracellular levels of unbound iron can contribute to the production of reactive oxygen species (ROS) via the Fenton reaction, while depletion of iron limits the availability of iron-containing proteins, some of which have important functions in defence against oxidative stress. Vice versa increased ROS levels lead to the damage of proteins with iron sulphur centres. Thus, organisms have to coordinate and balance their responses to oxidative stress and iron availability. Our knowledge of the molecular mechanisms underlying the co-regulation of these responses remains limited. To discriminate between a direct cellular response to iron limitation and indirect responses, which are the consequence of increased levels of ROS, we compared the response of the alpha-proteobacterium Rhodobacter sphaeroides to iron limitation in the presence or absence of oxygen. Results: One third of all genes with altered expression under iron limitation showed a response that was independent of oxygen availability. The other iron-regulated genes showed different responses in oxic or anoxic conditions and were grouped into six clusters based on the different expression profiles. For two of these clusters, induction in response to iron limitation under oxic conditions was dependent on the OxyR regulatory protein. An OxyR mutant showed increased ROS production and impaired growth under iron limitation. Conclusion: Some R. sphaeroides genes respond to iron limitation irrespective of oxygen availability. These genes therefore reflect a "core iron response" that is independent of potential ROS production under oxic, iron-limiting conditions. However, the regulation of most of the iron-responsive genes was biased by oxygen availability. Most strikingly, the OxyR-dependent activation of a subset of genes upon iron limitation under oxic conditions, including many genes with a role in iron metabolism, revealed that elevated ROS levels were an important trigger for this response. OxyR thus provides a regulatory link between the responses to oxidative stress and to iron limitation in R. sphaeroides. KW - oxidative stress KW - Rhodobacter sphaeroides KW - RNAseq KW - OxyR KW - iron limitation KW - transcriptomics KW - dependent gene-expression KW - hydrogen-peroxide KW - escherichia coli Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115357 SN - 1471-2164 VL - 15 IS - 794 ER - TY - JOUR A1 - Kim, Jae Ho A1 - Franck, Julien A1 - Kang, Taewook A1 - Heinsen, Helmut A1 - Ravid, Rivka A1 - Ferrer, Isidro A1 - Cheon, Mi Hee A1 - Lee, Joo-Yong A1 - Yoo, Jong Shin A1 - Steinbusch, Harry W. A1 - Salzet, Michel A1 - Fournier, Isabelle A1 - Park, Young Mok T1 - Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer's disease JF - Scientific Reports N2 - Alzheimer's disease (AD) is the most common form of dementia; however, mechanisms and biomarkers remain unclear. Here, we examined hippocampal CA4 and dentate gyrus subfields, which are less studied in the context of AD pathology, in post-mortem AD and control tissue to identify possible biomarkers. We performed mass spectrometry-based proteomic analysis combined with label-free quantification for identification of differentially expressed proteins. We identified 4,328 proteins, of which 113 showed more than 2-fold higher or lower expression in AD hippocampi than in control tissues. Five proteins were identified as putative AD biomarkers (MDH2, PCLO, TRRAP, YWHAZ, and MUC19 isoform 5) and were cross-validated by immunoblotting, selected reaction monitoring, and MALDI imaging. We also used a bioinformatics approach to examine upstream signalling interactions of the 113 regulated proteins. Five upstream signalling (IGF1, BDNF, ZAP70, MYC, and cyclosporin A) factors showed novel interactions in AD hippocampi. Taken together, these results demonstrate a novel platform that may provide new strategies for the early detection of AD and thus its diagnosis. KW - imaging mass spectrometry KW - neuron navigator 3 KW - dentate gyrus KW - growth factor KW - mouse model KW - neurotrophic factor KW - entorhinal cortex KW - factor expression KW - oxidative stress KW - memory deficits Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151727 VL - 5 IS - 11138 ER -