TY - JOUR A1 - Weider, Matthias A1 - Wegener, Amélie A1 - Schmitt, Christian A1 - Küspert, Melanie A1 - Hillgärtner, Simone A1 - Bösl, Michael R. A1 - Hermans-Borgmeyer, Irm A1 - Nait-Oumesmar, Brahim A1 - Wegner, Michael T1 - Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells JF - PLoS Genetics N2 - Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies. KW - peripheral nervous system KW - Hirschsprung disease KW - spinal-cord KW - boundary cap KW - differentiation KW - stem cells KW - factor Sox10 KW - mouse model KW - expression KW - Olig2 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144123 VL - 11 IS - 2 ER - TY - JOUR A1 - Karl, Stefan A1 - Dandekar, Thomas T1 - Convergence behaviour and control in non-linear biological networks JF - Scientific Reports N2 - Control of genetic regulatory networks is challenging to define and quantify. Previous control centrality metrics, which aim to capture the ability of individual nodes to control the system, have been found to suffer from plausibility and applicability problems. Here we present a new approach to control centrality based on network convergence behaviour, implemented as an extension of our genetic regulatory network simulation framework Jimena (http://stefan-karl.de/jimena). We distinguish three types of network control, and show how these mathematical concepts correspond to experimentally verified node functions and signalling pathways in immunity and cell differentiation: Total control centrality quantifies the impact of node mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signalling cascades (e.g. src kinase or Jak/Stat pathways). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Surveying random scale-free networks and biological networks, we find that control of the network resides in few high degree driver nodes and networks can be controlled best if they are sparsely connected. KW - complex networks KW - control profiles KW - differentiation KW - pathways KW - tumors KW - models KW - centrality KW - chondrosarcoma KW - transcriptional regulation KW - regulatory networks Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148510 VL - 5 IS - 09746 ER - TY - JOUR A1 - Schilbach, Karin A1 - Alkhaled, Mohammed A1 - Welker, Christian A1 - Eckert, Franziska A1 - Blank, Gregor A1 - Ziegler, Hendrik A1 - Sterk, Marco A1 - Müller, Friederike A1 - Sonntag, Katja A1 - Wieder, Thomas A1 - Braumüller, Heidi A1 - Schmitt, Julia A1 - Eyrich, Matthias A1 - Schleicher, Sabine A1 - Seitz, Christian A1 - Erbacher, Annika A1 - Pichler, Bernd J. A1 - Müller, Hartmut A1 - Tighe, Robert A1 - Lim, Annick A1 - Gillies, Stephen D. A1 - Strittmatter, Wolfgang A1 - Röcken, Martin A1 - Handgretinger, Rupert T1 - Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation JF - OncoImmunology N2 - Stimulating the immune system to attack cancer is a promising approach, even for the control of advanced cancers. Several cytokines that promote interferon-γ-dominated immune responses show antitumor activity, with interleukin 12 (IL-12) being of major importance. Here, we used an antibody-IL-12 fusion protein (NHS-IL12) that binds histones of necrotic cells to treat human sarcoma in humanized mice. Following sarcoma engraftment, NHS-IL12 therapy was combined with either engineered IL-7 (FcIL-7) or IL-2 (IL-2MAB602) for continuous cytokine bioavailability. NHS-IL12 strongly induced innate and adaptive antitumor immunity when combined with IL-7 or IL-2. NHS-IL12 therapy significantly improved survival of sarcoma-bearing mice and caused long-term remissions when combined with IL-2. NHS-IL12 induced pronounced cancer cell senescence, as documented by strong expression of senescence-associated p16\(^{INK4a}\) and nuclear translocation of p-HP1γ, and permanent arrest of cancer cell proliferation. In addition, this cancer immunotherapy initiated the induction of myogenic differentiation, further promoting the hypothesis that efficient antitumor immunity includes mechanisms different from cytotoxicity for efficient cancer control in vivo. KW - TH17 cells KW - cancer-targeted IL-12 KW - differentiation KW - humanized mice KW - immunocytokine KW - immunotherapy KW - M1/M2 macrophages KW - rhabdomyosarcoma KW - TH1-induced senescence KW - tumor-infiltrating lymphocytes Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154579 VL - 4 IS - 7 ER -