TY - JOUR A1 - Verner, Martin A1 - Herrmann, Martin J. A1 - Troche, Stefan J. A1 - Roebers, Claudia M. A1 - Rammsayer, Thomas H. T1 - Cortical oxygen consumption in mental arithmetic as a function of task difficulty: a near-infrared spectroscopy approach JF - Frontiers in Human Neuroscience N2 - The present study investigated changes in cortical oxygenation during mental arithmetic using near-infrared spectroscopy (NIRS). Twenty-nine male volunteers were examined using a 52-channel continuous wave system for analyzing activity in prefrontal areas. With the help of a probabilistic mapping method, three regions of interest (ROIs) on each hemisphere were defined: The inferior frontal gyri (IFG), the middle frontal gyri (MFG), and the superior frontal gyri (SFG). Oxygenation as an indicator of functional brain activation was compared over the three ROI and two levels of arithmetic task difficulty (simple and complex additions). In contrast to most previous studies using fMRI or NIRS, in the present study arithmetic tasks were presented verbally in analogue to many daily life situations. With respect to task difficulty, more complex addition tasks led to higher oxygenation in all defined ROI except in the left IFG compared to simple addition tasks. When compared to the channel positions covering different gyri of the temporal lobe, the observed sensitivity to task complexity was found to be restricted to the specified ROIs. As to the comparison of ROIs, the highest oxygenation was found in the IFG, while MFG and SFG showed significantly less activation compared to IFG. The present cognitive-neuroscience approach demonstrated that NIRS is a suitable and highly feasible research tool for investigating and quantifying neural effects of increasing arithmetic task difficulty. KW - cortical activation KW - working memory KW - individual differences KW - prefrontal cortex KW - FMRI KW - brain-regions KW - subsctraction KW - activation KW - bold KW - intelligibility KW - NIRS KW - oxygen consumption KW - task difficulty KW - mental arithmetic KW - near-infrared spectroscopy Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122449 SN - 1662-5161 VL - 7 IS - 217 ER - TY - JOUR A1 - Kopf, Juliane A1 - Dresler, Thomas A1 - Reicherts, Philipp A1 - Herrmann, Martin J. A1 - Reif, Andreas T1 - The Effect of Emotional Content on Brain Activation and the Late Positive Potential in a Word n-back Task JF - PLoS ONE N2 - Introduction There is mounting evidence for the influence of emotional content on working memory performance. This is particularly important in light of the emotion processing that needs to take place when emotional content interferes with executive functions. In this study, we used emotional words of different valence but with similar arousal levels in an n-back task. Methods We examined the effects on activation in the prefrontal cortex by means of functional near-infrared spectroscopy (fNIRS) and on the late positive potential (LPP). FNIRS and LPP data were examined in 30 healthy subjects. Results Behavioral results show an influence of valence on the error rate depending on the difficulty of the task: more errors were made when the valence was negative and the task difficult. Brain activation was dependent both on the difficulty of the task and on the valence: negative valence of a word diminished the increase in activation, whereas positive valence did not influence the increase in activation, while difficulty levels increased. The LPP also differentiated between the different valences, and in addition was influenced by the task difficulty, the more difficult the task, the less differentiation could be observed. Conclusions Summarized, this study shows the influence of valence on a verbal working memory task. When a word contained a negative valence, the emotional content seemed to take precedence in contrast to words containing a positive valence. Working memory and emotion processing sites seemed to overlap and compete for resources even when words are carriers of the emotional content. KW - analysis of variance KW - electrode recording KW - electroencephalography KW - emotions KW - eyes KW - near-infrared spectroscopy KW - reaction time KW - working memory Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96687 ER - TY - JOUR A1 - Zinner, Christoph A1 - Hauser, Anna A1 - Born, Dennis-Peter A1 - Wehrlin, Jon P. A1 - Holmberg, Hans-Christer A1 - Sperlich, Billy T1 - Influence of Hypoxic Interval Training and Hyperoxic Recovery on Muscle Activation and Oxygenation in Connection with Double-Poling Exercise JF - PLoS One N2 - Here, we evaluated the influence of breathing oxygen at different partial pressures during recovery from exercise on performance at sea-level and a simulated altitude of 1800 m, as reflected in activation of different upper body muscles, and oxygenation of the m. triceps brachii. Ten well-trained, male endurance athletes (25.3±4.1 yrs; 179.2±4.5 cm; 74.2±3.4 kg) performed four test trials, each involving three 3-min sessions on a double-poling ergometer with 3-min intervals of recovery. One trial was conducted entirely under normoxic (No) and another under hypoxic conditions \((Ho; F_iO_2 = 0.165)\). In the third and fourth trials, the exercise was performed in normoxia and hypoxia, respectively, with hyperoxic recovery \((HOX; F_iO_2 = 1.00)\) in both cases. Arterial hemoglobin saturation was higher under the two HOX conditions than without HOX (p<0.05). Integrated muscle electrical activity was not influenced by the oxygen content (best d = 0.51). Furthermore, the only difference in tissue saturation index measured via near-infrared spectroscopy observed was between the recovery periods during the NoNo and HoHOX interventions (P<0.05, d = 0.93). In the case of HoHo the athletes’ \(P_{mean}\) declined from the first to the third interval (P < 0.05), whereas Pmean was unaltered under the HoHOX, NoHOX and NoNo conditions. We conclude that the less pronounced decline in \(P_{mean}\) during 3 x 3-min double-poling sprints in normoxia and hypoxia with hyperoxic recovery is not related to changes in muscle activity or oxygenation. Moreover, we conclude that hyperoxia \((F_iO_2 = 1.00)\) used in conjunction with hypoxic or normoxic work intervals may serve as an effective aid when inhaled during the subsequent recovery intervals. KW - triceps KW - bood KW - medical hypoxia KW - blood KW - arms KW - hyperoxia KW - breathing KW - near-infrared spectroscopy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126299 VL - 10 IS - 10 ER - TY - JOUR A1 - Üçeyler, Nurcan A1 - Kewenig, Susanne A1 - Kittel-Schneider, Sarah A1 - Fallgatter, Andreas J. A1 - Sommer, Claudia T1 - Increased cortical activation upon painful stimulation in fibromyalgia syndrome JF - BMC Neurology N2 - Background Fibromyalgia syndrome (FMS) is a chronic condition characterized by widespread pain and associated symptoms. We investigated cerebral activation in FMS patients by functional near-infrared spectroscopy (fNIRS). Methods Two stimulation paradigms were applied: a) painful pressure stimulation at the dorsal forearm; b) verbal fluency test (VFT). We prospectively recruited 25 FMS patients, ten patients with unipolar major depression (MD) without pain, and 35 healthy controls. All patients underwent neurological examination and all subjects were investigated with questionnaires (pain, depression, FMS, empathy). Results FMS patients had lower pressure pain thresholds than patients with MD and controls (p < 0.001) and reported higher pain intensity (p < 0.001). Upon unilateral pressure pain stimulation fNIRS recordings revealed increased bilateral cortical activation in FMS patients compared to controls (p < 0.05). FMS patients also displayed a stronger contralateral activity over the dorsolateral prefrontal cortex in direct comparison to patients with MD (p < 0.05). While all three groups performed equally well in the VFT, a frontal deficit in cortical activation was only found in patients with depression (p < 0.05). Performance and cortical activation correlated negatively in FMS patients (p < 0.05) and positively in patients with MD (p < 0.05). Conclusion Our data give further evidence for altered central nervous processing in patients with FMS and the distinction between FMS and MD. KW - fibromyalgia syndrome KW - depression KW - cortical activation KW - pain KW - near-infrared spectroscopy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125230 VL - 15 IS - 210 ER - TY - JOUR A1 - Katzorke, Andrea A1 - Zeller, Julia B. M. A1 - Müller, Laura D. A1 - Lauer, Martin A1 - Polak, Thomas A1 - Reif, Andreas A1 - Deckert, Jürgen A1 - Herrmann, Martin J. T1 - Reduced activity in the right inferior frontal gyrus in elderly APOE-E4 carriers during a verbal fluency task JF - Frontiers in Human Neuroscience N2 - Apolipoprotein-E4 (APOE-E4) is a major genetic risk factor for developing Alzheimer’s disease (AD). The verbal fluency task (VFT), especially the subtask category fluency, has shown to provide a good discrimination between cognitively normal controls and subjects with AD. Interestingly, APOE-E4 seems to have no effect on the behavioral performance during a VFT in healthy elderly. Thus, the purpose of the present study was to reveal possible compensation mechanisms by investigating the effect of APOE-E4 on the hemodynamic response in non-demented elderly during a VFT by using functional near-infrared spectroscopy (fNIRS). We compared performance and hemodynamic response of high risk APOE-E4/E4, -E3/E4 carriers with neutral APOE-E3/E3 non-demented subjects (N = 288; 70–77 years). No difference in performance was found. APOE-E4/E4, -E3/E4 carriers had a decreased hemodynamic response in the right inferior frontal junction (IFJ) with a corresponding higher response in the left middle frontal gyrus (MFG) during category fluency. Performance was correlated with the hemodynamic response in the MFG. We assume a compensation of decreased IFJ brain activation by utilizing the MFG during category fluency and thus resulting in no behavioral differences between APOE-groups during the performance of a VFT. KW - psychiatry KW - near-infrared spectroscopy KW - verbal fluency task KW - apolipoprotein-E4 KW - Alzheimer's disease KW - elderly Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171892 VL - 11 ER - TY - JOUR A1 - Zinner, Christoph A1 - Born, Dennis-Peter A1 - Sperlich, Billy T1 - Ischemic preconditioning does not alter performance in multidirectional high-intensity intermittent exercise JF - Frontiers in Physiology N2 - Purpose: Research dealing with ischemic preconditioning (IPC) has primarily focused on variables associated to endurance performance with little research about the acute responses of IPC on repeated multidirectional running sprint performance. Here we aimed to investigate the effects of IPC of the arms and the legs on repeated running sprint performance with changes-of-direction (COD) movements. Methods: Thirteen moderately-to-well-trained team-sport athletes (7 males; 6 females; age: 24 ± 2 years, size: 175 ± 8 cm, body mass: 67.9 ± 8.1 kg) performed 16 × 30 m all-out sprints (15 s rest) with multidirectional COD movements on a Speedcourt\(^{©}\) with IPC (3 × 5 min) of the legs (IPC\(_{leg}\); 240 mm Hg) or of the arms (remote IPC: IPC\(_{remote}\); 180–190 mm Hg) 45 min before the sprints and a control trial (CON; 20 mm Hg). Results: The mean (±SD) time for the 16 × 30 m multidirectional COD sprints was similar between IPC\(_{leg}\) (Mean t: 16.0 ± 1.8 s), IPC\(_{remote}\) (16.2 ± 1.7 s), and CON (16.0 ± 1.6 s; p = 0.50). No statistical differences in oxygen uptake (mean difference: 0%), heart rate (1.1%) nor muscle oxygen saturation of the vastus lateralis (4.7%) and biceps brachii (7.8%) between the three conditions were evident (all p > 0.05). Conclusions: IPC (3 × 5 min) of the legs (220 mm Hg) or arms (180–190 mm Hg; remote IPC) applied 45 min before 16 × 30 m repeated multidirectional running sprint exercise does not improve sprint performance, oxygen uptake, heart rate nor muscle oxygen saturation of the vastus lateralis muscle when compared to a control trial. KW - team sport KW - agility KW - change of direction KW - muscle oxygen saturation KW - near-infrared spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159348 VL - 8 ER -