TY - JOUR A1 - Herrmann, Thomas A1 - Karunakaran, Mohindar M. T1 - The Vγ9Vδ2 T cell antigen receptor and butyrophilin-3 A1: models of interaction, the possibility of co-evolution, and the case of dendritic epidermal T cells N2 - Most circulating human gamma delta T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains show a Vγ9-JP (Vγ2-Jγ1.2) rearrangement and are paired with Vδ2-containing δ-chains, a dominantTCR configuration, which until recently seemed to occur in primates only. Vγ9Vδ2 T cells respond to phosphoantigens (PAg) such as (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is produced by many pathogens and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. A prerequisite for PAg-induced activation is the contact of Vγ9Vδ2 T cells with cells expressing butyrophilin-3 A1 (BTN3A1). We will first critically review models of how BTN3 might act in PAg-mediated Vγ9Vδ2 T cell activation and then address putative co-evolution of Vγ9, Vδ2, and BTN3 genes. In those rodent and lagomorphs used as animal models, all three genes are lost but a data-base analysis showed that they emerged together with placental mammals. A strong concomitant conservation of functional Vγ9, Vδ2, and BTN3 genes in other species suggests co-evolution of these three genes. A detailed analysis was performed for the new world camelid alpaca (Vicugna pacos). It provides an excellent candidate for a non-primate species with presumably functional Vγ9Vδ2 T cells since TCR rearrangements share features characteristic for PAg-reactive primate Vγ9Vδ2 TCR and proposed PAg-binding sites of BTN3A1 have been conserved. Finally, we analyze the possible functional relationship between the butyrophilin-family member Skint1 and the γδTCR-V genes used by murine dendritic epithelialT cells (DETC). Among placental mammals, we identify five rodents, the cow, a bat, and the cape golden mole as the only species concomitantly possessing potentially functional homologs of murineVγ3,Vδ4 genes, and Skint1 gene and suggest to search for DETC like cells in these species. KW - γδ T cells KW - Vγ9Vδ2 T cell KW - phosphoantigen KW - BTN3 KW - alpaca KW - co-evolution KW - DETC KW - Skint1 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111141 ER - TY - JOUR A1 - Herrmann, Thomas A1 - Karunakaran, Mohindar Murugesh A1 - Fichtner, Alina Suzann T1 - A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T‐cells JF - Immunological Reviews N2 - Both, jawless and jawed vertebrates possess three lymphocyte lineages defined by highly diverse antigen receptors: Two T‐cell‐ and one B‐cell‐like lineage. In both phylogenetic groups, the theoretically possible number of individual antigen receptor specificities can even outnumber that of lymphocytes of a whole organism. Despite fundamental differences in structure and genetics of these antigen receptors, convergent evolution led to functional similarities between the lineages. Jawed vertebrates possess αβ and γδ T‐cells defined by eponymous αβ and γδ T‐cell antigen receptors (TCRs). “Conventional” αβ T‐cells recognize complexes of Major Histocompatibility Complex (MHC) class I and II molecules and peptides. Non‐conventional T‐cells, which can be αβ or γδ T‐cells, recognize a large variety of ligands and differ strongly in phenotype and function between species and within an organism. This review describes similarities and differences of non‐conventional T‐cells of various species and discusses ligands and functions of their TCRs. A special focus is laid on Vγ9Vδ2 T‐cells whose TCRs act as sensors for phosphorylated isoprenoid metabolites, so‐called phosphoantigens (PAg), associated with microbial infections or altered host metabolism in cancer or after drug treatment. We discuss the role of butyrophilin (BTN)3A and BTN2A1 in PAg‐sensing and how species comparison can help in a better understanding of this human Vγ9Vδ2 T‐cell subset. KW - antigen presentation KW - BTN2 KW - BTN3 KW - butyrophilin KW - evolution KW - γδ TCR Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218373 VL - 298 IS - 1 SP - 218 EP - 236 ER -