TY - JOUR A1 - Langlhofer, Georg A1 - Villmann, Carmen T1 - The Intracellular Loop of the Glycine Receptor: It's not all about the Size JF - Frontiers in Molecular Neuroscience N2 - The family of Cys-loop receptors (CLRs) shares a high degree of homology and sequence identity. The overall structural elements are highly conserved with a large extracellular domain (ECD) harboring an α-helix and 10 β-sheets. Following the ECD, four transmembrane domains (TMD) are connected by intracellular and extracellular loop structures. Except the TM3–4 loop, their length comprises 7–14 residues. The TM3–4 loop forms the largest part of the intracellular domain (ICD) and exhibits the most variable region between all CLRs. The ICD is defined by the TM3–4 loop together with the TM1–2 loop preceding the ion channel pore. During the last decade, crystallization approaches were successful for some members of the CLR family. To allow crystallization, the intracellular loop was in most structures replaced by a short linker present in prokaryotic CLRs. Therefore, no structural information about the large TM3–4 loop of CLRs including the glycine receptors (GlyRs) is available except for some basic stretches close to TM3 and TM4. The intracellular loop has been intensively studied with regard to functional aspects including desensitization, modulation of channel physiology by pharmacological substances, posttranslational modifications, and motifs important for trafficking. Furthermore, the ICD interacts with scaffold proteins enabling inhibitory synapse formation. This review focuses on attempts to define structural and functional elements within the ICD of GlyRs discussed with the background of protein-protein interactions and functional channel formation in the absence of the TM3–4 loop. KW - posttranslational modifications KW - GlyR receptors KW - synaptic inhibition KW - intracellular domain KW - interaction partners Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165394 IS - 9 ER - TY - JOUR A1 - Juergens, Lukas A1 - Bieniussa, Linda A1 - Voelker, Johannes A1 - Hagen, Rudolf A1 - Rak, Kristen T1 - Spatio-temporal distribution of tubulin-binding cofactors and posttranslational modifications of tubulin in the cochlea of mice JF - Histochemistry and Cell Biology N2 - The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the formation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing. KW - tubulin-binding cofactors KW - tubulin KW - development KW - cochlea KW - posttranslational modifications KW - hearing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234852 SN - 0948-6143 VL - 154 ER -