TY - JOUR A1 - Godbole, Amod A1 - Lyga, Sandra A1 - Lohse, Martin J. A1 - Calebiro, Davide T1 - Internalized TSH receptors en route to the TGN induce local G\(_{S}\)-protein signaling and gene transcription JF - Nature Communications N2 - A new paradigm of G-protein-coupled receptor (GPCR) signaling at intracellular sites has recently emerged, but the underlying mechanisms and functional consequences are insufficiently understood. Here, we show that upon internalization in thyroid cells, endogenous TSH receptors traffic retrogradely to the trans-Golgi network (TGN) and activate endogenous Gs-proteins in the retromer-coated compartment that brings them to the TGN. Receptor internalization is associated with a late cAMP/protein kinase A (PKA) response at the Golgi/TGN. Blocking receptor internalization, inhibiting PKA II/interfering with its Golgi/TGN localization, silencing retromer or disrupting Golgi/TGN organization all impair efficient TSH-dependent cAMP response element binding protein (CREB) phosphorylation. These results suggest that retrograde trafficking to the TGN induces local G\(_{S}\)-protein activation and cAMP/PKA signaling at a critical position near the nucleus, which appears required for efficient CREB phosphorylation and gene transcription. This provides a new mechanism to explain the functional consequences of GPCR signaling at intracellular sites and reveals a critical role for the TGN in GPCR signaling. KW - G protein-coupled receptors KW - fluorescence imaging KW - hormone receptors KW - trans-Golgi network Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170375 VL - 8 IS - 443 ER - TY - JOUR A1 - Schihada, Hannes A1 - Vandenabeele, Sylvie A1 - Zabel, Ulrike A1 - Frank, Monika A1 - Lohse, Martin J. A1 - Maiellaro, Isabella T1 - A universal bioluminescence resonance energy transfer sensor design enables high-sensitivity screening of GPCR activation dynamics JF - Communications Biology N2 - G-protein-coupled receptors (GPCRs) represent one of the most important classes of drug targets. The discovery of new GCPR therapeutics would greatly benefit from the development of a generalizable high-throughput assay to directly monitor their activation or de-activation. Here we screened a variety of labels inserted into the third intracellular loop and the C-terminus of the alpha(2 Lambda)-adrenergic receptor and used fluorescence (FRET) and bioluminescence resonance energy transfer (BRET) to monitor ligand-binding and activation dynamics. We then developed a universal intramolecular BRET receptor sensor design to quantify efficacy and potency of GPCR ligands in intact cells and real time. We demonstrate the transferability of the sensor design by cloning beta(2)-adrenergic and PTH1-receptor BRET sensors and monitored their efficacy and potency. For all biosensors, the Z factors were well above 0.5 showing the suitability of such design for microtiter plate assays. This technology will aid the identification of novel types of GPCR ligands. KW - Fluorescence resonance energy transfer KW - G protein-coupled receptors KW - High-throughput screening Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228592 VL - 1 IS - 105 ER -