TY - JOUR A1 - Vogel, Patrick A1 - Markert, Jonathan A1 - Rückert, Martin A. A1 - Herz, Stefan A1 - Keßler, Benedikt A1 - Dremel, Kilian A1 - Althoff, Daniel A1 - Weber, Matthias A1 - Buzug, Thorsten M. A1 - Bley, Thorsten A. A1 - Kullmann, Walter H. A1 - Hanke, Randolf A1 - Zabler, Simon A1 - Behr, Volker C. T1 - Magnetic Particle Imaging meets computed tomography: first simultaneous imaging JF - Scientific Reports N2 - Magnetic Particle Imaging (MPI) is a promising new tomographic modality for fast as well as three-dimensional visualization of magnetic material. For anatomical or structural information an additional imaging modality such as computed tomography (CT) is required. In this paper, the first hybrid MPI-CT scanner for multimodal imaging providing simultaneous data acquisition is presented. KW - Applied physics KW - Biomedical engineering KW - Imaging techniques Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202501 VL - 9 ER - TY - JOUR A1 - Herold, Volker A1 - Kampf, Thomas A1 - Jakob, Peter Michael T1 - Dynamic magnetic resonance scattering JF - Communications Physics N2 - Dynamic light scattering is a popular technique to determine the size distribution of small particles in the sub micrometer region. It operates in reciprocal space, by analyzing the signal fluctuations with the photon auto correlation function. Equally, pulsed field gradient magnetic resonance is a technique generating data in the reciprocal space of the density distribution of an object. Here we show the feasibility of employing a magnetic resonance imaging system as a dynamic scattering device similar to dynamic light scattering appliances. By acquiring a time series of single data points from reciprocal space, analogue to dynamic light scattering, we demonstrate the examination of motion patterns of microscopic particles. This method allows the examination of particle dynamics significantly below the spatial resolution of magnetic resonance imaging. It is not limited by relaxation times and covers a wide field of applications for particle or cell motion in opaque media. KW - Characterization and analytical techniques KW - Imaging techniques Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201091 VL - 2 ER -