TY - JOUR T1 - Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in \({pp}\) collisions at root s=13 TeV with the ATLAS detector JF - Physics Letters B N2 - A search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a leptonically decaying Z boson in proton-proton collisions at root s = 13 TeV is presented. This search uses 36.1 fb(-1) of data collected by the ATLAS experiment at the Large Hadron Collider. No significant deviation from the expectation of the Standard Model backgrounds is observed. Assuming the Standard Model ZH production cross-section, an observed (expected) upper limit of 67% (39%) at the 95% confidence level is set on the branching ratio of invisible decays of the Higgs boson with mass m(H) = 125 GeV. The corresponding limits on the production cross-section of the ZH process with the invisible Higgs boson decays are also presented. Furthermore, exclusion limits on the dark matter candidate and mediator masses are reported in the framework of simplified dark matter models. (c) 2017 The Author(s). Published by Elsevier B.V. KW - Distributions KW - Models Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225947 VL - 776 IS - 1 ER - TY - JOUR A1 - Ribitsch, Iris A1 - Peham, Christian A1 - Ade, Nicole A1 - Duerr, Julia A1 - Handschuh, Stephan A1 - Schramel, Johannes Peter A1 - Vogl, Claus A1 - Walles, Heike A1 - Egerbacher, Monika A1 - Jenner, Florian T1 - Structure-Function relationships of equine menisci JF - PLoS ONE N2 - Meniscal pathologies are among the most common injuries of the femorotibial joint in both human and equine patients. Pathological forces and ensuing injuries of the cranial horn of the equine medial meniscus are considered analogous to those observed in the human posterior medial horn. Biomechanical properties of human menisci are site-and depth-specific. However, the influence of equine meniscus topography and composition on its biomechanical properties is yet unknown. A better understanding of equine meniscus composition and biomechanics could advance not only veterinary therapies for meniscus degeneration or injuries, but also further substantiate the horse as suitable translational animal model for (human) meniscus tissue engineering. Therefore, the aim of this study was to investigate the composition and structure of the equine knee meniscus in a site-and age-specific manner and their relationship with potential site-specific biomechanical properties. The meniscus architecture was investigated histologically. Biomechanical testing included evaluation of the shore hardness (SH), stiffness and energy loss of the menisci. The SH was found to be subjected to both age and site-specific changes, with an overall higher SH of the tibial meniscus surface and increase in SH with age. Stiffness and energy loss showed neither site nor age related significant differences. The macroscopic and histologic similarities between equine and human menisci described in this study, support continued research in this field. KW - Human Medial Meniscus KW - Articular-Cartilage KW - Biomechanical Properties KW - Compressive Properties KW - Human Knee KW - Collagen KW - Injuries KW - Models KW - Repair KW - Osteoarthritis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225214 VL - 13 IS - 3 ER - TY - JOUR T1 - Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at root s=13TeV JF - The European Physical Journal C N2 - A search for doubly charged Higgs bosons with pairs of prompt, isolated, highly energetic leptons with the same electric charge is presented. The search uses a proton-proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to 36.1 fb(-1) of integrated luminosity recorded in 2015 and 2016 by the ATLAS detector at the LHC. This analysis focuses on the decays H-+/-+/- -> e(+/-)e(+/-), H-+/-+/- -> e(+/-)mu(+/-) and H-+/-+/- -> mu(+/-)mu(+/-), fitting the dilepton mass spectra in several exclusive signal regions. No significant evidence of a signal is observed and corresponding limits on the production cross-section and consequently a lower limit on m(H-+/-+/-) are derived at 95% confidence level. With l(+/-)l(+/-) = e(+/-)e(+/-)/mu(+/-)mu(+/-)/e(+/-)mu(+/-), the observed lower limit on the mass of a doubly charged Higgs boson only coupling to left-handed leptons varies from 770 to 870GeV (850GeV expected) for B(H-+/-+/- -> l(+/-)l(+/-)) = 100% and both the expected and observed mass limits are above 450GeV for B(H-+/-+/- -> l(+/-)l(+/-)) = 10% and any combination of partial branching ratios. KW - Cross-Section KW - Symmetry KW - Models KW - LHC Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225591 VL - 78 IS - 199 ER - TY - JOUR T1 - Search for flavour-changing neutral current top-quark decays \(t\) -> \({qZ}\) in proton-proton collisions at root s=13 TeV with the ATLAS detector JF - Journal of High Energy Physics N2 - A search for flavour-changing neutral-current processes in top-quark decays is presented. Data collected with the ATLAS detector from proton-proton collisions at the Large Hadron Collider at a centre-of-mass energy of root s = 13TeV, corresponding to an integrated luminosity of 36.1 fb(-1), are analysed. The search is performed using top-quark pair events, with one top quark decaying through the t -> qZ (q = u, c) flavour-changing neutral-current channel, and the other through the dominant Standard Model mode t -> bW. Only Z boson decays into charged leptons and leptonic W boson decays are considered as signal. Consequently, the final-state topology is characterized by the presence of three isolated charged leptons (electrons or muons), at least two jets, one of the jets originating from a b-quark, and missing transverse momentum from the undetected neutrino. The data are consistent with Standard Model background contributions, and at 95% confidence level the search sets observed (expected) upper limits of 1.7 x 10(-4) (2.4 x 10(-4)) on the t -> uZ branching ratio and 2.4 x 10(-4) (3.2 x 10(-4)) on the t -> cZ branching ratio, constituting the most stringent limits to date. KW - Hadron-Hadron scattering (experiments) KW - Parton Distributions KW - ++ KW - Pair-Production KW - Cross-Section KW - Physics KW - Models Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226114 VL - 176 IS - 7 ER -