TY - JOUR A1 - Thibaudeau, Laure A1 - Taubenberger, Anna V. A1 - Holzapfel, Boris M. A1 - Quent, Verena M. A1 - Fuehrmann, Tobias A1 - Hesami, Parisa A1 - Brown, Toby D. A1 - Dalton, Paul D. A1 - Power, Carl A. A1 - Hollier, Brett G. A1 - Hutmacher, Dietmar W. T1 - A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone JF - Disease Models & Mechanisms N2 - The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact 'organ' bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo. KW - breast cancer KW - bone metastasis KW - humanized xenograft model KW - melt electrospinning KW - tissue engineering KW - osteotropism KW - in vivo KW - stem-cell niche KW - human prostate-cancer KW - morphogenetic protein KW - osteoprogenitor cells KW - endochondral ossification KW - mouse model KW - trabecular bone KW - calcium phosphate KW - skeletal metastases Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117466 VL - 7 IS - 2 ER - TY - JOUR A1 - Seiler, Jonas A1 - Ebert, Regina A1 - Rudert, Maximilian A1 - Herrmann, Marietta A1 - Leich, Ellen A1 - Weißenberger, Manuela A1 - Horas, Konstantin T1 - Bone metastases of diverse primary origin frequently express the VDR (vitamin D receptor) and CYP24A1 JF - Journal of Clinical Medicine N2 - Active vitamin D (1,25(OH)2D3) is known to exert direct anti-cancer actions on various malignant tissues through binding to the vitamin D receptor (VDR). These effects have been demonstrated in breast, prostate, renal and thyroid cancers, which all have a high propensity to metastasise to bone. In addition, there is evidence that vitamin D catabolism via 24-hydroxylase (CYP24A1) is altered in tumour cells, thus, reducing local active vitamin D levels in cancer cells. The aim of this study was to assess VDR and CYP24A1 expression in various types of bone metastases by using immunohistochemistry. Overall, a high total VDR protein expression was detected in 59% of cases (39/66). There was a non-significant trend of high-grade tumours towards the low nuclear VDR expression (p = 0.07). Notably, patients with further distant metastases had a reduced nuclear VDR expression (p = 0.03). Furthermore, a high CYP24A1 expression was detected in 59% (39/66) of bone metastases. There was a significant positive correlation between nuclear VDR and CYP24A1 expression (p = 0.001). Collectively, the VDR and CYP24A1 were widely expressed in a multitude of bone metastases, pointing to a potential role of vitamin D signalling in cancer progression. This is of high clinical relevance, as vitamin D deficiency is frequent in patients with bone metastases. KW - vitamin D receptor KW - VDR KW - CYP24A1 KW - bone metastasis KW - vitamin D Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297377 SN - 2077-0383 VL - 11 IS - 21 ER -