TY - JOUR A1 - Schartl, Manfred A1 - Walter, Ronald B. A1 - Shen, Yingjia A1 - Garcia, Tzintzuni A1 - Catchen, Julian A1 - Amores, Angel A1 - Braasch, Ingo A1 - Chalopin, Domitille A1 - Volff, Jean-Nicolas A1 - Lesch, Klaus-Peter A1 - Bisazza, Angelo A1 - Minx, Pat A1 - Hillier, LaDeana A1 - Wilson, Richard K. A1 - Fürstenberg, Susan A1 - Boore, Jeffrey A1 - Searle, Steve A1 - Postlethwait, John H. A1 - Warren, Wesley C. T1 - The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits JF - Nature Genetics N2 - Several attributes intuitively considered to be typical mammalian features, such as complex behavior, live birth and malignant disease such as cancer, also appeared several times independently in lower vertebrates. The genetic mechanisms underlying the evolution of these elaborate traits are poorly understood. The platyfish, X. maculatus, offers a unique model to better understand the molecular biology of such traits. We report here the sequencing of the platyfish genome. Integrating genome assembly with extensive genetic maps identified an unexpected evolutionary stability of chromosomes in fish, in contrast to in mammals. Genes associated with viviparity show signatures of positive selection, identifying new putative functional domains and rare cases of parallel evolution. We also find that genes implicated in cognition show an unexpectedly high rate of duplicate gene retention after the teleost genome duplication event, suggesting a hypothesis for the evolution of the behavioral complexity in fish, which exceeds that found in amphibians and reptiles. KW - genomics KW - genomic analysis KW - evolutionary biology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132152 VL - 45 IS - 5 ER - TY - JOUR A1 - Carradec, Quentin A1 - Pelletier, Eric A1 - Da Silva, Corinne A1 - Alberti, Adriana A1 - Seeleuthner, Yoann A1 - Blanc-Mathieu, Romain A1 - Lima-Mendez, Gipsi A1 - Rocha, Fabio A1 - Tirichine, Leila A1 - Labadie, Karine A1 - Kirilovsky, Amos A1 - Bertrand, Alexis A1 - Engelen, Stefan A1 - Madoui, Mohammed-Amin A1 - Méheust, Raphaël A1 - Poulain, Julie A1 - Romac, Sarah A1 - Richter, Daniel J. A1 - Yoshikawa, Genki A1 - Dimier, Céline A1 - Kandels-Lewis, Stefanie A1 - Picheral, Marc A1 - Searson, Sarah A1 - Jaillon, Olivier A1 - Aury, Jean-Marc A1 - Karsenti, Eric A1 - Sullivan, Matthew B. A1 - Sunagawa, Shinichi A1 - Bork, Peer A1 - Not, Fabrice A1 - Hingamp, Pascal A1 - Raes, Jeroen A1 - Guidi, Lionel A1 - Ogata, Hiroyuki A1 - de Vargas, Colomban A1 - Iudicone, Daniele A1 - Bowler, Chris A1 - Wincker, Patrick T1 - A global ocean atlas of eukaryotic gene JF - Nature Communications N2 - While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry. KW - genomics KW - marine biology KW - microbial ecology KW - water microbiology Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222250 VL - 9 ER - TY - JOUR A1 - Esken, Jens A1 - Goris, Tobias A1 - Gadkari, Jennifer A1 - Bischler, Thorsten A1 - Förstner, Konrad U. A1 - Sharma, Cynthia M. A1 - Diekert, Gabriele A1 - Schubert, Torsten T1 - Tetrachloroethene respiration in Sulfurospirillum species is regulated by a two‐component system as unraveled by comparative genomics, transcriptomics, and regulator binding studies JF - MicrobiologyOpen N2 - Energy conservation via organohalide respiration (OHR) in dehalogenating Sulfurospirillum species is an inducible process. However, the gene products involved in tetrachloroethene (PCE) sensing and signal transduction have not been unambiguously identified. Here, genome sequencing of Sulfurospirillum strains defective in PCE respiration and comparative genomics, which included the PCE‐respiring representatives of the genus, uncovered the genetic inactivation of a two‐component system (TCS) in the OHR gene region of the natural mutants. The assumption that the TCS gene products serve as a PCE sensor that initiates gene transcription was supported by the constitutive low‐level expression of the TCS operon in fumarate‐adapted cells of Sulfurospirillum multivorans. Via RNA sequencing, eight transcriptional units were identified in the OHR gene region, which includes the TCS operon, the PCE reductive dehalogenase operon, the gene cluster for norcobamide biosynthesis, and putative accessory genes with unknown functions. The OmpR‐family response regulator (RR) encoded in the TCS operon was functionally characterized by promoter‐binding assays. The RR bound a cis‐regulatory element that contained a consensus sequence of a direct repeat (CTATW) separated by 17 bp. Its location either overlapping the −35 box or 50 bp further upstream indicated different regulatory mechanisms. Sequence variations in the regulator binding sites identified in the OHR gene region were in accordance with differences in the transcript levels of the respective gene clusters forming the PCE regulon. The results indicate the presence of a fine‐tuned regulatory network controlling PCE metabolism in dehalogenating Sulfurospirillum species, a group of metabolically versatile organohalide‐respiring bacteria. KW - genomics KW - organohalide respiration KW - RNA sequencing KW - tetrachloroethene KW - transcriptomics KW - two‐component system Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225754 VL - 9 IS - 12 ER - TY - JOUR A1 - Helmprobst, Frederik A1 - Kneitz, Susanne A1 - Klotz, Barbara A1 - Naville, Magali A1 - Dechaud, Corentin A1 - Volff, Jean-Nicolas A1 - Schartl, Manfred T1 - Differential expression of transposable elements in the medaka melanoma model JF - PLoS One N2 - Malignant melanoma incidence is rising worldwide. Its treatment in an advanced state is difficult, and the prognosis of this severe disease is still very poor. One major source of these difficulties is the high rate of metastasis and increased genomic instability leading to a high mutation rate and the development of resistance against therapeutic approaches. Here we investigate as one source of genomic instability the contribution of activation of transposable elements (TEs) within the tumor. We used the well-established medaka melanoma model and RNA-sequencing to investigate the differential expression of TEs in wildtype and transgenic fish carrying melanoma. We constructed a medaka-specific TE sequence library and identified TE sequences that were specifically upregulated in tumors. Validation by qRT- PCR confirmed a specific upregulation of a LINE and an LTR element in malignant melanomas of transgenic fish. KW - melanoma KW - genomics KW - transposable elements KW - cancer genomics KW - malignant tumors KW - gene prediction KW - human genomics KW - retrotransposons Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260615 VL - 16 IS - 10 ER - TY - JOUR A1 - Höhne, Christin A1 - Prokopov, Dmitry A1 - Kuhl, Heiner A1 - Du, Kang A1 - Klopp, Christophe A1 - Wuertz, Sven A1 - Trifonov, Vladimir A1 - Stöck, Matthias T1 - The immune system of sturgeons and paddlefish (Acipenseriformes): a review with new data from a chromosome‐scale sturgeon genome JF - Reviews in Aquaculture N2 - Sturgeon immunity is relevant for basic evolutionary and applied research, including caviar‐ and meat‐producing aquaculture, protection of wild sturgeons and their re‐introduction through conservation aquaculture. Starting from a comprehensive overview of immune organs, we discuss pathways of innate and adaptive immune systems in a vertebrate phylogenetic and genomic context. The thymus as a key organ of adaptive immunity in sturgeons requires future molecular studies. Likewise, data on immune functions of sturgeon‐specific pericardial and meningeal tissues are largely missing. Integrating immunological and endocrine functions, the sturgeon head kidney resembles that of teleosts. Recently identified pattern recognition receptors in sturgeon require research on downstream regulation. We review first acipenseriform data on Toll‐like receptors (TLRs), type I transmembrane glycoproteins expressed in membranes and endosomes, initiating inflammation and host defence by molecular pattern‐induced activation. Retinoic acid‐inducible gene‐I‐like (RIG‐like) receptors of sturgeons present RNA and key sensors of virus infections in most cell types. Sturgeons and teleosts share major components of the adaptive immune system, including B cells, immunoglobulins, major histocompatibility complex and the adaptive cellular response by T cells. The ontogeny of the sturgeon innate and onset of adaptive immune genes in different organs remain understudied. In a genomics perspective, our new data on 100 key immune genes exemplify a multitude of evolutionary trajectories after the sturgeon‐specific genome duplication, where some single‐copy genes contrast with many duplications, allowing tissue specialization, sub‐functionalization or both. Our preliminary conclusion should be tested by future evolutionary bioinformatics, involving all >1000 immunity genes. This knowledge update about the acipenseriform immune system identifies several important research gaps and presents a basis for future applications. KW - evolution KW - genomics KW - immune genes KW - immune organs KW - immune system KW - sturgeon Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239865 VL - 13 IS - 3 SP - 1709 EP - 1729 ER - TY - JOUR A1 - Mehmood, Rashid A1 - Alsaleh, Alanoud A1 - Want, Muzamil Y. A1 - Ahmad, Ijaz A1 - Siraj, Sami A1 - Ishtiaq, Muhammad A1 - Alshehri, Faizah A. A1 - Naseem, Muhammad A1 - Yasuhara, Noriko T1 - Integrative molecular analysis of DNA methylation dynamics unveils molecules with prognostic potential in breast cancer JF - BioMedInformatics N2 - DNA methylation acts as a major epigenetic modification in mammals, characterized by the transfer of a methyl group to a cytosine. DNA methylation plays a pivotal role in regulating normal development, and misregulation in cells leads to an abnormal phenotype as is seen in several cancers. Any mutations or expression anomalies of genes encoding regulators of DNA methylation may lead to abnormal expression of critical molecules. A comprehensive genomic study encompassing all the genes related to DNA methylation regulation in relation to breast cancer is lacking. We used genomic and transcriptomic datasets from the Cancer Genome Atlas (TGCA) Pan-Cancer Atlas, Genotype-Tissue Expression (GTEx) and microarray platforms and conducted in silico analysis of all the genes related to DNA methylation with respect to writing, reading and erasing this epigenetic mark. Analysis of mutations was conducted using cBioportal, while Xena and KMPlot were utilized for expression changes and patient survival, respectively. Our study identified multiple mutations in the genes encoding regulators of DNA methylation. The expression profiling of these showed significant differences between normal and disease tissues. Moreover, deregulated expression of some of the genes, namely DNMT3B, MBD1, MBD6, BAZ2B, ZBTB38, KLF4, TET2 and TDG, was correlated with patient prognosis. The current study, to our best knowledge, is the first to provide a comprehensive molecular and genetic profile of DNA methylation machinery genes in breast cancer and identifies DNA methylation machinery as an important determinant of the disease progression. The findings of this study will advance our understanding of the etiology of the disease and may serve to identify alternative targets for novel therapeutic strategies in cancer. KW - DNA methylation KW - epigenetic modification KW - breast cancer KW - genomics KW - in silico analysis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-321171 SN - 2673-7426 VL - 3 IS - 2 SP - 434 EP - 445 ER - TY - JOUR A1 - Sendell-Price, Ashley T. A1 - Tulenko, Frank J. A1 - Pettersson, Mats A1 - Kang, Du A1 - Montandon, Margo A1 - Winkler, Sylke A1 - Kulb, Kathleen A1 - Naylor, Gavin P. A1 - Phillippy, Adam A1 - Fedrigo, Olivier A1 - Mountcastle, Jacquelyn A1 - Balacco, Jennifer R. A1 - Dutra, Amalia A1 - Dale, Rebecca E. A1 - Haase, Bettina A1 - Jarvis, Erich D. A1 - Myers, Gene A1 - Burgess, Shawn M. A1 - Currie, Peter D. A1 - Andersson, Leif A1 - Schartl, Manfred T1 - Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks JF - Nature Communications N2 - Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10\(^{−10}\) per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate. KW - evolutionary genetics KW - genomics KW - molecular evolution Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357827 VL - 14 ER -