TY - JOUR A1 - Semmler, Anna-Lena A1 - Sacconi, Sabrina A1 - Bach, J. Elisa A1 - Liebe, Claus A1 - Bürmann, Jan A1 - Kley, Rudolf A. A1 - Ferbert, Andreas A1 - Anderheiden, Roland A1 - Van den Bergh, Peter A1 - Martin, Jean-Jacques A1 - De Jonghe, Peter A1 - Neuen-Jacob, Eva A1 - Müller, Oliver A1 - Deschauer, Marcus A1 - Bergmann, Markus A1 - Schröder, J. Michael A1 - Vorgerd, Matthias A1 - Schulz, Jörg B. A1 - Weis, Joachim A1 - Kress, Wolfram A1 - Claeys, Kristl G. T1 - Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies JF - Orphanet Journal of Rare Diseases N2 - Background: Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. Methods: We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms. Results: We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p. Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p. Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%). Conclusions: We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the MFM patients, indicating that more causative genes are still to be found. Next generation sequencing techniques should be helpful in achieving this aim. KW - polyneuropathy KW - MFM KW - next generation sequencing KW - bcl-2 associated athanogene protein 3 KW - protein aggregation KW - hearing impairment KW - early respiratory-failure KW - myopathy KW - muscular-dystrophy KW - skeletal myopathy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115623 SN - 1750-1172 N1 - Additional files are available here: http://www.ojrd.com/content/9/1/121/additional VL - 9 IS - 121 ER - TY - JOUR A1 - Wolf, Beat A1 - Kuonen, Pierre A1 - Dandekar, Thomas A1 - Atlan, David T1 - DNAseq workflow in a diagnostic context and an example of a user friendly implementation JF - BioMed Research International N2 - Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing. KW - next generation sequencing KW - genome browser KW - mutation KW - algorithm KW - database KW - format KW - discovery KW - exome KW - variants KW - alignment Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144527 IS - 403497 ER - TY - JOUR A1 - Sickel, Wiebke A1 - Ankenbrand, Markus J. A1 - Grimmer, Gudrun A1 - Holzschuh, Andrea A1 - Härtel, Stephan A1 - Lanzen, Jonathan A1 - Steffan-Dewenter, Ingolf A1 - Keller, Alexander T1 - Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach JF - BMC Ecology N2 - Background Meta-barcoding of mixed pollen samples constitutes a suitable alternative to conventional pollen identification via light microscopy. Current approaches however have limitations in practicability due to low sample throughput and/or inefficient processing methods, e.g. separate steps for amplification and sample indexing. Results We thus developed a new primer-adapter design for high throughput sequencing with the Illumina technology that remedies these issues. It uses a dual-indexing strategy, where sample-specific combinations of forward and reverse identifiers attached to the barcode marker allow high sample throughput with a single sequencing run. It does not require further adapter ligation steps after amplification. We applied this protocol to 384 pollen samples collected by solitary bees and sequenced all samples together on a single Illumina MiSeq v2 flow cell. According to rarefaction curves, 2,000–3,000 high quality reads per sample were sufficient to assess the complete diversity of 95% of the samples. We were able to detect 650 different plant taxa in total, of which 95% were classified at the species level. Together with the laboratory protocol, we also present an update of the reference database used by the classifier software, which increases the total number of covered global plant species included in the database from 37,403 to 72,325 (93% increase). Conclusions This study thus offers improvements for the laboratory and bioinformatical workflow to existing approaches regarding data quantity and quality as well as processing effort and cost-effectiveness. Although only tested for pollen samples, it is furthermore applicable to other research questions requiring plant identification in mixed and challenging samples. KW - pollination ecology KW - next generation sequencing KW - ITS2 KW - illumina MiSeq platform KW - high throughput sequencing KW - DNA barcoding KW - NGS KW - osmia KW - palynolog Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125730 VL - 15 IS - 20 ER - TY - JOUR A1 - Horn, Hannes A1 - Keller, Alexander A1 - Hildebrandt, Ulrich A1 - Kämpfer, Peter A1 - Riederer, Markus A1 - Hentschel, Ute T1 - Draft genome of the \(Arabidopsis\) \(thaliana\) phyllosphere bacterium, \(Williamsia\) sp. ARP1 JF - Standards in Genomic Sciences N2 - The Gram-positive actinomycete \(Williamsia\) sp. ARP1 was originally isolated from the \(Arabidopsis\) \(thaliana\) phyllosphere. Here we describe the general physiological features of this microorganism together with the draft genome sequence and annotation. The 4,745,080 bp long genome contains 4434 protein-coding genes and 70 RNA genes. To our knowledge, this is only the second reported genome from the genus \(Williamsia\) and the first sequenced strain from the phyllosphere. The presented genomic information is interpreted in the context of an adaptation to the phyllosphere habitat. KW - arabidopsis thaliana KW - whole genome sequencing KW - adaption KW - Williamsia sp. ARP1 KW - phyllosphere KW - draft genome KW - next generation sequencing KW - assembly KW - annotation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146008 VL - 11 IS - 8 ER - TY - JOUR A1 - Weisschuh, Nicole A1 - Mayer, Anja K. A1 - Strom, Tim M. A1 - Kohl, Susanne A1 - Glöckle, Nicola A1 - Schubach, Max A1 - Andreasson, Sten A1 - Bernd, Antje A1 - Birch, David G. A1 - Hamel, Christian P. A1 - Heckenlively, John R. A1 - Jacobson, Samuel G. A1 - Kamme, Christina A1 - Kellner, Ulrich A1 - Kunstmann, Erdmute A1 - Maffei, Pietro A1 - Reiff, Charlotte M. A1 - Rohrschneider, Klaus A1 - Rosenberg, Thomas A1 - Rudolph, Günther A1 - Vámos, Rita A1 - Varsányi, Balázs A1 - Weleber, Richard G. A1 - Wissinger, Bernd T1 - Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing JF - PLoS ONE N2 - Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes. KW - mutation detection KW - retinal dystrophies KW - next generation sequencing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167398 VL - 11 IS - 1 ER - TY - JOUR A1 - Fux, Robert A1 - Arndt, Daniela A1 - Langenmayer, Martin C. A1 - Schwaiger, Julia A1 - Ferling, Hermann A1 - Fischer, Nicole A1 - Indenbirken, Daniela A1 - Grundhoff, Adam A1 - Dölken, Lars A1 - Adamek, Mikolaj A1 - Steinhagen, Dieter A1 - Sutter, Gerd T1 - Piscine orthoreovirus 3 is not the causative pathogen of proliferative darkening syndrome (PDS) of brown trout (Salmo trutta fario) JF - Viruses N2 - The proliferative darkening syndrome (PDS) is a lethal disease of brown trout (Salmo trutta fario) which occurs in several alpine Bavarian limestone rivers. Because mortality can reach 100%, PDS is a serious threat for affected fish populations. Recently, Kuehn and colleagues reported that a high throughput RNA sequencing approach identified a piscine orthoreovirus (PRV) as a causative agent of PDS. We investigated samples from PDS-affected fish obtained from two exposure experiments performed at the river Iller in 2008 and 2009. Using a RT-qPCR and a well-established next-generation RNA sequencing pipeline for pathogen detection, PRV-specific RNA was not detectable in PDS fish from 2009. In contrast, PRV RNA was readily detectable in several organs from diseased fish in 2008. However, similar virus loads were detectable in the control fish which were not exposed to Iller water and did not show any signs of the disease. Therefore, we conclude that PRV is not the causative agent of PDS of brown trout in the rhithral region of alpine Bavarian limestone rivers. The abovementioned study by Kuehn used only samples from the exposure experiment from 2008 and detected a subclinical PRV bystander infection. Work is ongoing to identify the causative agent of PDS. KW - proliferative darkening syndrome KW - black trout syndrome KW - piscine orthoreovirus KW - orthoreovirus KW - brown trout KW - Salmo trutta fario KW - next generation sequencing KW - RT-qPCR Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196991 SN - 1999-4915 VL - 11 IS - 2 ER - TY - JOUR A1 - Schümann, Franziska Lea A1 - Groß, Elisabeth A1 - Bauer, Marcus A1 - Rohde, Christian A1 - Sandmann, Sarah A1 - Terziev, Denis A1 - Müller, Lutz P. A1 - Posern, Guido A1 - Wienke, Andreas A1 - Fend, Falko A1 - Hansmann, Martin-Leo A1 - Klapper, Wolfram A1 - Rosenwald, Andreas A1 - Stein, Harald A1 - Dugas, Martin A1 - Müller-Tidow, Carsten A1 - Wickenhauser, Claudia A1 - Binder, Mascha A1 - Weber, Thomas T1 - Divergent effects of EZH1 and EZH2 protein expression on the prognosis of patients with T-cell lymphomas JF - Biomedicines N2 - T-cell lymphomas are highly heterogeneous and their prognosis is poor under the currently available therapies. Enhancers of zeste homologue 1 and 2 (EZH1/2) are histone H3 lysine-27 trimethyltransferases (H3K27me3). Despite the rapid development of new drugs inhibiting EZH2 and/or EZH1, the molecular interplay of these proteins and the impact on disease progression and prognosis of patients with T-cell lymphomas remains insufficiently understood. In this study, EZH1/2 mutation status was evaluated in 33 monomorphic epitheliotropic intestinal T-cell lymphomas by next generation sequencing and EZH1/2 and H3K27me3 protein expression levels were detected by immunohistochemistry in 46 T-cell lymphomas. Correlations with clinicopathologic features were analyzed and survival curves generated. No EZH1 mutations and one (3%) EZH2 missense mutation were identified. In univariable analysis, high EZH1 expression was associated with an improved overall survival (OS) and progression-free survival (PFS) whereas high EZH2 and H3K27me3 expression were associated with poorer OS and PFS. Multivariable analysis revealed EZH1 (hazard ratio (HR) = 0.183; 95% confidence interval (CI): 0.044–0.767; p = 0.020;) and EZH2 (HR = 8.245; 95% CI: 1.898–35.826; p = 0.005) to be independent, divergent prognostic markers for OS. In conclusion, EZH1/2 protein expression had opposing effects on the prognosis of T-cell lymphoma patients. KW - T-cell non-Hodgkin's lymphomas KW - PTCL KW - epigenetics KW - EZH1 KW - EZH2 KW - H3K27me3 KW - immunohistochemistry KW - next generation sequencing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252155 SN - 2227-9059 VL - 9 IS - 12 ER - TY - JOUR A1 - Nanda, Indrajit A1 - Steinlein, Claus A1 - Haaf, Thomas A1 - Buhl, Eva M. A1 - Grimm, Domink G. A1 - Friedman, Scott L. A1 - Meurer, Steffen K. A1 - Schröder, Sarah K. A1 - Weiskirchen, Ralf T1 - Genetic characterization of rat hepatic stellate cell line HSC-T6 for in vitro cell line authentication JF - Cells N2 - Immortalized hepatic stellate cells (HSCs) established from mouse, rat, and humans are valuable in vitro models for the biomedical investigation of liver biology. These cell lines are homogenous, thereby providing consistent and reproducible results. They grow more robustly than primary HSCs and provide an unlimited supply of proteins or nucleic acids for biochemical studies. Moreover, they can overcome ethical concerns associated with the use of animal and human tissue and allow for fostering of the 3R principle of replacement, reduction, and refinement proposed in 1959 by William M. S. Russell and Rex L. Burch. Nevertheless, working with continuous cell lines also has some disadvantages. In particular, there are ample examples in which genetic drift and cell misidentification has led to invalid data. Therefore, many journals and granting agencies now recommend proper cell line authentication. We herein describe the genetic characterization of the rat HSC line HSC-T6, which was introduced as a new in vitro model for the study of retinoid metabolism. The consensus chromosome markers, outlined primarily through multicolor spectral karyotyping (SKY), demonstrate that apart from the large derivative chromosome 1 (RNO1), at least two additional chromosomes (RNO4 and RNO7) are found to be in three copies in all metaphases. Additionally, we have defined a short tandem repeat (STR) profile for HSC-T6, including 31 species-specific markers. The typical features of these cells have been further determined by electron microscopy, Western blotting, and Rhodamine-Phalloidin staining. Finally, we have analyzed the transcriptome of HSC-T6 cells by mRNA sequencing (mRNA-Seq) using next generation sequencing (NGS). KW - liver KW - extracellular matrix KW - hepatic stellate cell KW - myofibroblast KW - fibrosis KW - in vitro model KW - SKY analysis KW - phalloidin stain KW - next generation sequencing KW - STR profile Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275178 SN - 2073-4409 VL - 11 IS - 11 ER -