TY - JOUR A1 - Hojsgaard, Diego A1 - Schartl, Manfred T1 - Skipping sex: A nonrecombinant genomic assemblage of complementary reproductive modules JF - BioEssays N2 - The unusual occurrence and developmental diversity of asexual eukaryotes remain a puzzle. De novo formation of a functioning asexual genome requires a unique assembly of sets of genes or gene states to disrupt cellular mechanisms of meiosis and gametogenesis, and to affect discrete components of sexuality and produce clonal or hemiclonal offspring. We highlight two usually overlooked but essential conditions to understand the molecular nature of clonal organisms, that is, a nonrecombinant genomic assemblage retaining modifiers of the sexual program, and a complementation between altered reproductive components. These subtle conditions are the basis for physiologically viable and genetically balanced transitions between generations. Genomic and developmental evidence from asexual animals and plants indicates the lack of complementation of molecular changes in the sexual reproductive program is likely the main cause of asexuals' rarity, and can provide an explanatory frame for the developmental diversity and lability of developmental patterns in some asexuals as well as for the discordant time to extinction estimations. KW - amphimixis KW - apomixis KW - automixis KW - gynogenesis KW - hybridogenesis KW - parthenogenesis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225818 VL - 43 IS - 1 ER - TY - JOUR A1 - Dedukh, Dmitrij A1 - Da Cruz, Irene A1 - Kneitz, Susanne A1 - Marta, Anatolie A1 - Ormanns, Jenny A1 - Tichopád, Tomáš A1 - Lu, Yuan A1 - Alsheimer, Manfred A1 - Janko, Karel A1 - Schartl, Manfred T1 - Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa JF - Chromosome Research N2 - Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes. KW - meiosis KW - parthenogenesis KW - synaptonemal complex KW - recombination KW - crossing-over KW - achiasmatic KW - transcriptome KW - oogenesis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325128 VL - 30 IS - 4 ER -