TY - JOUR A1 - Rukoyatkina, N. A1 - Mindukshev, I. A1 - Walter, U. A1 - Gambaryan, S. T1 - Dual role of the p38 \(MAPK/cPLA_2\) pathway in the regulation of platelet apoptosis induced by ABT-737 and strong platelet agonists JF - Cell Death & Disease N2 - p38 Mitogen-activated protein (MAP) kinase is involved in the apoptosis of nucleated cells. Although platelets are anucleated cells, apoptotic proteins have been shown to regulate platelet lifespan. However, the involvement of p38 MAP kinase in platelet apoptosis is not yet clearly defined. Therefore, we investigated the role of p38 MAP kinase in apoptosis induced by a mimetic of BH3-only proteins, ABT-737, and in apoptosis-like events induced by such strong platelet agonists as thrombin in combination with convulxin (Thr/Cvx), both of which result in p38 MAP kinase phosphorylation and activation. A p38 inhibitor (SB202190) inhibited the apoptotic events induced by ABT-737 but did not influence those induced by Thr/Cvx. The inhibitor also reduced the phosphorylation of cytosolic phospholipase \(A_2\) (cPLA2), an established p38 substrate, induced by ABT-737 or Thr/Cvx. ABT-737, but not Thr/Cvx, induced the caspase 3-dependent cleavage and inactivation of cPLA2. Thus, p38 MAPK promotes ABT-737-induced apoptosis by inhibiting the cPLA2/arachidonate pathway. We also show that arachidonic acid (AA) itself and in combination with Thr/Cvx or ABT-737 at low concentrations prevented apoptotic events, whereas at high concentrations it enhanced such events. Our data support the hypothesis that the p38 MAPK-triggered arachidonate pathway serves as a defense mechanism against apoptosis under physiological conditions. KW - cPLA2 KW - platelet KW - apoptosis KW - p38 MAP kinase Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128783 VL - 4 IS - e931 ER - TY - JOUR A1 - Stegner, David A1 - Klaus, Vanessa A1 - Nieswandt, Bernhard T1 - Platelets as modulators of cerebral ischemia/reperfusion injury JF - Frontiers in Immunology N2 - Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, the rapid recanalization of occluded cranial vessels is the primary therapeutic aim. However, experimental data (obtained using mostly the transient middle cerebral artery occlusion model) indicates that progressive stroke can still develop despite successful recanalization, a process termed “reperfusion injury.” Mounting experimental evidence suggests that platelets and T cells contribute to cerebral ischemia/reperfusion injury, and ischemic stroke is increasingly considered a thrombo-inflammatory disease. The interaction of von Willebrand factor and its receptor on the platelet surface, glycoprotein Ib, as well as many activatory platelet receptors and platelet degranulation contribute to secondary infarct growth in this setting. In contrast, interference with GPIIb/IIIa-dependent platelet aggregation and thrombus formation does not improve the outcome of acute brain ischemia but dramatically increases the susceptibility to intracranial hemorrhage. Here, we summarize the current understanding of the mechanisms and the potential translational impact of platelet contributions to cerebral ischemia/reperfusion injury. KW - thrombo-inflammation KW - ischemic stroke KW - platelet KW - glycoprotein Ibα KW - platelet degranulation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195748 SN - 1664-3224 VL - 10 IS - 2505 ER - TY - JOUR A1 - Balkenhol, Johannes A1 - Kaltdorf, Kristin V. A1 - Mammadova-Bach, Elmina A1 - Braun, Attila A1 - Nieswandt, Bernhard A1 - Dittrich, Marcus A1 - Dandekar, Thomas T1 - Comparison of the central human and mouse platelet signaling cascade by systems biological analysis JF - BMC Genomics N2 - Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences. KW - interspecies comparison KW - transcriptome KW - proteome KW - platelet KW - network KW - signaling KW - mouse KW - human KW - interactome KW - cascade Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230377 VL - 21 ER - TY - JOUR A1 - Rommel, Marcel G. E. A1 - Milde, Christian A1 - Eberle, Regina A1 - Schulze, Harald A1 - Modlich, Ute T1 - Endothelial–platelet interactions in influenza‐induced pneumonia: A potential therapeutic target JF - Anatomia, Histologia, Embryologia N2 - Every year, influenza viruses spread around the world, infecting the respiratory systems of countless humans and animals, causing illness and even death. Severe influenza infection is associated with pulmonary epithelial damage and endothelial dysfunction leading to acute lung injury (ALI). There is evidence that an aggressive cytokine storm and cell damage in lung capillaries as well as endothelial/platelet interactions contribute to vascular leakage, pro‐thrombotic milieu and infiltration of immune effector cells. To date, treatments for ALI caused by influenza are limited to antiviral drugs, active ventilation or further symptomatic treatments. In this review, we summarize the mechanisms of influenza‐mediated pathogenesis, permissive animal models and histopathological changes of lung tissue in both mice and men and compare it with histological and electron microscopic data from our own group. We highlight the molecular and cellular interactions between pulmonary endothelium and platelets in homeostasis and influenza‐induced pathogenesis. Finally, we discuss novel therapeutic targets on platelets/endothelial interaction to reduce or resolve ALI. KW - endothelial cell KW - influenza KW - interaction KW - laboratory animals KW - lung injury KW - platelet KW - pneumonia KW - therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213610 VL - 49 IS - 5 SP - 606 EP - 619 ER - TY - JOUR A1 - Laukner, Anna A1 - Truchet, Laura A1 - Manukjan, Georgi A1 - Schulze, Harald A1 - Langbein-Detsch, Ines A1 - Mueller, Elisabeth A1 - Leeb, Tosso A1 - Kehl, Alexandra T1 - Effects of cocoa genotypes on coat color, platelets and coagulation parameters in French Bulldogs JF - Genes N2 - A nonsense variant in HPS3, c.2420G>A or p.Trp807*, was recently discovered as the cause for a brown coat color termed cocoa in French Bulldogs. Here, we studied the genotype–phenotype correlation regarding coat color in HPS3 mutant dogs that carried various combinations of mutant alleles at other coat color genes. Different combinations of HPS3, MLPH and TYRP1 genotypes resulted in subtly different shades of brown coat colors. As HPS3 variants in humans cause the Hermansky–Pudlak syndrome type 3, which in addition to oculocutaneous albinism is characterized by a storage pool deficiency leading to bleeding tendency, we also investigated the phenotypic consequences of the HPS3 variant in French Bulldogs on hematological parameters. HPS3 mutant dogs had a significantly lowered platelet dense granules abundance. However, no increased bleeding tendencies in daily routine were reported by dog owners. We therefore conclude that in dogs, the phenotypic effect of the HPS3 variant is largely restricted to pigmentation. While an effect on platelet morphology is evident, we did not obtain any indications for major health problems associated with the cocoa coat color in French Bulldogs. Further studies will be necessary to definitely rule out very subtle effects on visual acuity or a clinically relevant bleeding disorder. KW - Canis lupus familiaris KW - dog KW - thrombocyte KW - pigmentation KW - hematology KW - platelet Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242745 SN - 2073-4425 VL - 12 IS - 7 ER - TY - JOUR A1 - Perrella, Gina A1 - Montague, Samantha J. A1 - Brown, Helena C. A1 - Garcia Quintanilla, Lourdes A1 - Slater, Alexandre A1 - Stegner, David A1 - Thomas, Mark A1 - Heemskerk, Johan W. M. A1 - Watson, Steve P. T1 - Role of tyrosine kinase Syk in thrombus stabilisation at high shear JF - International Journal of Molecular Sciences N2 - Understanding the pathways involved in the formation and stability of the core and shell regions of a platelet-rich arterial thrombus may result in new ways to treat arterial thrombosis. The distinguishing feature between these two regions is the absence of fibrin in the shell which indicates that in vitro flow-based assays over thrombogenic surfaces, in the absence of coagulation, can be used to resemble this region. In this study, we have investigated the contribution of Syk tyrosine kinase in the stability of platelet aggregates (or thrombi) formed on collagen or atherosclerotic plaque homogenate at arterial shear (1000 s\(^{−1}\)). We show that post-perfusion of the Syk inhibitor PRT-060318 over preformed thrombi on both surfaces enhances thrombus breakdown and platelet detachment. The resulting loss of thrombus stability led to a reduction in thrombus contractile score which could be detected as early as 3 min after perfusion of the Syk inhibitor. A similar loss of thrombus stability was observed with ticagrelor and indomethacin, inhibitors of platelet adenosine diphosphate (ADP) receptor and thromboxane A\(_2\) (TxA\(_2\)), respectively, and in the presence of the Src inhibitor, dasatinib. In contrast, the Btk inhibitor, ibrutinib, causes only a minor decrease in thrombus contractile score. Weak thrombus breakdown is also seen with the blocking GPVI nanobody, Nb21, which indicates, at best, a minor contribution of collagen to the stability of the platelet aggregate. These results show that Syk regulates thrombus stability in the absence of fibrin in human platelets under flow and provide evidence that this involves pathways additional to activation of GPVI by collagen. KW - disaggregation KW - platelet KW - Syk KW - thrombus KW - tyrosine kinase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284243 SN - 1422-0067 VL - 23 IS - 1 ER - TY - JOUR A1 - Koo, Chek Ziu A1 - Matthews, Alexandra L. A1 - Harrison, Neale A1 - Szyroka, Justyna A1 - Nieswandt, Bernhard A1 - Gardiner, Elizabeth E. A1 - Poulter, Natalie S. A1 - Tomlinson, Michael G. T1 - The platelet collagen receptor GPVI is cleaved by Tspan15/ADAM10 and Tspan33/ADAM10 molecular scissors JF - International Journal of Molecular Sciences N2 - The platelet-activating collagen receptor GPVI represents the focus of clinical trials as an antiplatelet target for arterial thrombosis, and soluble GPVI is a plasma biomarker for several human diseases. A disintegrin and metalloproteinase 10 (ADAM10) acts as a ‘molecular scissor’ that cleaves the extracellular region from GPVI and many other substrates. ADAM10 interacts with six regulatory tetraspanin membrane proteins, Tspan5, Tspan10, Tspan14, Tspan15, Tspan17 and Tspan33, which are collectively termed the TspanC8s. These are emerging as regulators of ADAM10 substrate specificity. Human platelets express Tspan14, Tspan15 and Tspan33, but which of these regulates GPVI cleavage remains unknown. To address this, CRISPR/Cas9 knockout human cell lines were generated to show that Tspan15 and Tspan33 enact compensatory roles in GPVI cleavage, with Tspan15 bearing the more important role. To investigate this mechanism, a series of Tspan15 and GPVI mutant expression constructs were designed. The Tspan15 extracellular region was found to be critical in promoting GPVI cleavage, and appeared to achieve this by enabling ADAM10 to access the cleavage site at a particular distance above the membrane. These findings bear implications for the regulation of cleavage of other ADAM10 substrates, and provide new insights into post-translational regulation of the clinically relevant GPVI protein. KW - ADAM10 KW - GPVI KW - tetraspanin KW - platelet KW - shedding KW - TspanC8 KW - metalloproteinase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284468 SN - 1422-0067 VL - 23 IS - 5 ER -