TY - JOUR A1 - Karimi, Sohail M. A1 - Freund, Matthias A1 - Wager, Brittney M. A1 - Knoblauch, Michael A1 - Fromm, Jörg A1 - M. Mueller, Heike A1 - Ache, Peter A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Müller, Tobias A1 - Dittrich, Marcus A1 - Geilfus, Christoph-Martin A1 - Alfaran, Ahmed H. A1 - Hedrich, Rainer A1 - Deeken, Rosalia T1 - Under salt stress guard cells rewire ion transport and abscisic acid signaling JF - New Phytologist N2 - Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity. KW - soil KW - stomata KW - abscisic acid (ABA) KW - glycophyte Arabidopsis KW - guard cell KW - halophyte Thellungiella/Eutrema KW - ion transport KW - salt stress Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259635 VL - 231 IS - 3 ER - TY - JOUR A1 - Röll, Alexander A1 - Ramesha, Mundre N. A1 - Link, Roman M. A1 - Hertel, Dietrich A1 - Schuldt, Bernhard A1 - Patil, Shekhargouda L. A1 - Hölscher, Dirk T1 - Water availability controls the biomass increment of Melia dubia in South India JF - Forests N2 - Farmland tree cultivation is considered an important option for enhancing wood production. In South India, the native leaf-deciduous tree species Melia dubia is popular for short-rotation plantations. Across a rainfall gradient from 420 to 2170 mm year\(^{–1}\), we studied 186 farmland woodlots between one and nine years in age. The objectives were to identify the main factors controlling aboveground biomass (AGB) and growth rates. A power-law growth model predicts an average stand-level AGB of 93.8 Mg ha\(^{–1}\) for nine-year-old woodlots. The resulting average annual AGB increment over the length of the rotation cycle is 10.4 Mg ha\(^{–1}\) year\(^{–1}\), which falls within the range reported for other tropical tree plantations. When expressing the parameters of the growth model as functions of management, climate and soil variables, it explains 65% of the variance in AGB. The results indicate that water availability is the main driver of the growth of M. dubia. Compared to the effects of water availability, the effects of soil nutrients are 26% to 60% smaller. We conclude that because of its high biomass accumulation rates in farm forestry, M. dubia is a promising candidate for short-rotation plantations in South India and beyond. KW - aboveground biomass KW - climatological water deficit KW - farm forestry KW - farmland woodlots KW - rainfall gradient KW - soil KW - wood production Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250150 SN - 1999-4907 VL - 12 IS - 12 ER -