TY - JOUR A1 - Holzschuh, Andrea A1 - Dormann, Carsten F. A1 - Tscharntke, Teja A1 - Steffan-Dewenter, Ingolf T1 - Mass-flowering crops enhance wild bee abundance JF - Oecologia N2 - Although agricultural habitats can provide enormous amounts of food resources for pollinator species, links between agricultural and (semi-)natural habitats through dispersal and foraging movements have hardly been studied. In 67 study sites, we assessed the interactions between mass-flowering oilseed rape fields and semi-natural grasslands at different spatial scales, and their effects on the number of brood cells of a solitary cavity-nesting bee. The probability that the bee Osmia bicornis colonized trap nests in oilseed rape fields increased from 12 to 59 % when grassland was nearby, compared to fields isolated from grassland. In grasslands, the number of brood cells of O. bicornis in trap nests was 55 % higher when adjacent to oilseed rape compared to isolated grasslands. The percentage of oilseed rape pollen in the larval food was higher in oilseed rape fields and grasslands adjacent to oilseed rape than in isolated grasslands. In both oilseed rape fields and grasslands, the number of brood cells was positively correlated with the percentage of oilseed rape pollen in the larval food. We show that mass-flowering agricultural habitats—even when they are intensively managed—can strongly enhance the abundance of a solitary bee species nesting in nearby semi-natural habitats. Our results suggest that positive effects of agricultural habitats have been underestimated and might be very common (at least) for generalist species in landscapes consisting of a mixture of agricultural and semi-natural habitats. These effects might also have—so far overlooked—implications for interspecific competition and mutualistic interactions in semi-natural habitats. KW - spillover KW - trap nests KW - pollen KW - oilseed rape KW - canola Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126852 VL - 172 IS - 2 ER - TY - JOUR A1 - Holzschuh, Andrea A1 - Dormann, Carsten F. A1 - Tscharntke, Teja A1 - Steffan-Dewenter, Ingolf T1 - Mass-flowering crops enhance wild bee abundance JF - Oecologia N2 - Although agricultural habitats can provide enormous amounts of food resources for pollinator species, links between agricultural and (semi-)natural habitats through dispersal and foraging movements have hardly been studied. In 67 study sites, we assessed the interactions between mass-flowering oilseed rape fields and semi-natural grasslands at different spatial scales, and their effects on the number of brood cells of a solitary cavity-nesting bee. The probability that the bee Osmia bicornis colonized trap nests in oilseed rape fields increased from 12 to 59 % when grassland was nearby, compared to fields isolated from grassland. In grasslands, the number of brood cells of O. bicornis in trap nests was 55 % higher when adjacent to oilseed rape compared to isolated grasslands. The percentage of oilseed rape pollen in the larval food was higher in oilseed rape fields and grasslands adjacent to oilseed rape than in isolated grasslands. In both oilseed rape fields and grasslands, the number of brood cells was positively correlated with the percentage of oilseed rape pollen in the larval food. We show that mass-flowering agricultural habitats—even when they are intensively managed—can strongly enhance the abundance of a solitary bee species nesting in nearby semi-natural habitats. Our results suggest that positive effects of agricultural habitats have been underestimated and might be very common (at least) for generalist species in landscapes consisting of a mixture of agricultural and semi-natural habitats. These effects might also have—so far overlooked—implications for interspecific competition and mutualistic interactions in semi-natural habitats. KW - spillover KW - pollen KW - oilseed rape KW - canola KW - trap nests Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132149 VL - 172 IS - 2 ER - TY - JOUR A1 - Klatt, Björn K. A1 - Holzschuh, Andrea A1 - Westphal, Catrin A1 - Clough, Yann A1 - Smit, Inga A1 - Pawelzik, Elke A1 - Tscharntke, Teja T1 - Bee pollination improves crop quality, shelf life and commercial value JF - Proceedings of the Royal Society B: Biological Sciences N2 - Pollination improves the yield of most crop species and contributes to one-third of global crop production, but comprehensive benefits including crop quality are still unknown. Hence, pollination is underestimated by international policies, which is particularly alarming in times of agricultural intensification and diminishing pollination services. In this study, exclusion experiments with strawberries showed bee pollination to improve fruit quality, quantity and market value compared with wind and self-pollination. Bee-pollinated fruits were heavier, had less malformations and reached higher commercial grades. They had increased redness and reduced sugar–acid–ratios and were firmer, thus improving the commercially important shelf life. Longer shelf life reduced fruit loss by at least 11%. This is accounting for 0.32 billion US$ of the 1.44 billion US$ provided by bee pollination to the total value of 2.90 billion US$ made with strawberry selling in the European Union 2009. The fruit quality and yield effects are driven by the pollination-mediated production of hormonal growth regulators, which occur in several pollination-dependent crops. Thus, our comprehensive findings should be transferable to a wide range of crops and demonstrate bee pollination to be a hitherto underestimated but vital and economically important determinant of fruit quality. KW - commercial grades KW - ecosystem services KW - post-harvest quality KW - shelf life KW - strawberry KW - crop yield KW - ecology Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120797 VL - 281 IS - 1775 ER - TY - JOUR A1 - Breeze, Tom D. A1 - Vaissiere, Bernhard E. A1 - Bommarco, Riccardo A1 - Petanidou, Theodora A1 - Seraphides, Nicos A1 - Kozak, Lajos A1 - Scheper, Jeroen A1 - Biesmeijer, Jacobus C. A1 - Kleijn, David A1 - Gyldenkærne, Steen A1 - Moretti, Marco A1 - Holzschuh, Andrea A1 - Steffan-Dewenter, Ingolf A1 - Stout, Jane C. A1 - Pärtel, Meelis A1 - Zobel, Martin A1 - Potts, Simon G. T1 - Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe JF - PLOS ONE N2 - Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue. KW - economy services KW - fruit set KW - sequential introduction KW - enhance KW - biodiversity KW - abundance KW - declines KW - crops KW - colonies KW - density Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117692 SN - 1932-6203 VL - 9 IS - 1 ER - TY - JOUR A1 - Hopfenmueller, Sebastian A1 - Steffan-Dewenter, Ingolf A1 - Holzschuh, Andrea T1 - Trait-Specific Responses of Wild Bee Communities to Landscape Composition, Configuration and Local Factors N2 - Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales. KW - habitats KW - bees KW - grasslands KW - species diversity KW - biodiversity KW - pollination KW - flowers KW - foraging Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112872 ER - TY - JOUR A1 - Sickel, Wiebke A1 - Ankenbrand, Markus J. A1 - Grimmer, Gudrun A1 - Holzschuh, Andrea A1 - Härtel, Stephan A1 - Lanzen, Jonathan A1 - Steffan-Dewenter, Ingolf A1 - Keller, Alexander T1 - Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach JF - BMC Ecology N2 - Background Meta-barcoding of mixed pollen samples constitutes a suitable alternative to conventional pollen identification via light microscopy. Current approaches however have limitations in practicability due to low sample throughput and/or inefficient processing methods, e.g. separate steps for amplification and sample indexing. Results We thus developed a new primer-adapter design for high throughput sequencing with the Illumina technology that remedies these issues. It uses a dual-indexing strategy, where sample-specific combinations of forward and reverse identifiers attached to the barcode marker allow high sample throughput with a single sequencing run. It does not require further adapter ligation steps after amplification. We applied this protocol to 384 pollen samples collected by solitary bees and sequenced all samples together on a single Illumina MiSeq v2 flow cell. According to rarefaction curves, 2,000–3,000 high quality reads per sample were sufficient to assess the complete diversity of 95% of the samples. We were able to detect 650 different plant taxa in total, of which 95% were classified at the species level. Together with the laboratory protocol, we also present an update of the reference database used by the classifier software, which increases the total number of covered global plant species included in the database from 37,403 to 72,325 (93% increase). Conclusions This study thus offers improvements for the laboratory and bioinformatical workflow to existing approaches regarding data quantity and quality as well as processing effort and cost-effectiveness. Although only tested for pollen samples, it is furthermore applicable to other research questions requiring plant identification in mixed and challenging samples. KW - pollination ecology KW - next generation sequencing KW - ITS2 KW - illumina MiSeq platform KW - high throughput sequencing KW - DNA barcoding KW - NGS KW - osmia KW - palynolog Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125730 VL - 15 IS - 20 ER - TY - JOUR A1 - Kleijn, David A1 - Winfree, Rachael A1 - Bartomeus, Ignasi A1 - Carvalheiro, Luísa G. A1 - Henry, Mickael A1 - Isaacs, Rufus A1 - Klein, Alexandra-Maria A1 - Kremen, Claire A1 - M'Gonigle, Leithen K. A1 - Rader, Romina A1 - Ricketts, Taylor H. A1 - Williams, Neal M. A1 - Adamson, Nancy Lee A1 - Ascher, John S. A1 - Báldi, András A1 - Batáry, Péter A1 - Benjamin, Faye A1 - Biesmeijer, Jacobus C. A1 - Blitzer, Eleanor J. A1 - Bommarco, Riccardo A1 - Brand, Mariette R. A1 - Bretagnolle, Vincent A1 - Button, Lindsey A1 - Cariveau, Daniel P. A1 - Chifflet, Rémy A1 - Colville, Jonathan F. A1 - Danforth, Bryan N. A1 - Elle, Elizabeth A1 - Garratt, Michael P. D. A1 - Herzog, Felix A1 - Holzschuh, Andrea A1 - Howlett, Brad G. A1 - Jauker, Frank A1 - Jha, Shalene A1 - Knop, Eva A1 - Krewenka, Kristin M. A1 - Le Féon, Violette A1 - Mandelik, Yael A1 - May, Emily A. A1 - Park, Mia G. A1 - Pisanty, Gideon A1 - Reemer, Menno A1 - Riedinger, Verena A1 - Rollin, Orianne A1 - Rundlöf, Maj A1 - Sardiñas, Hillary S. A1 - Scheper, Jeroen A1 - Sciligo, Amber R. A1 - Smith, Henrik G. A1 - Steffan-Dewenter, Ingolf A1 - Thorp, Robbin A1 - Tscharntke, Teja A1 - Verhulst, Jort A1 - Viana, Blandina F. A1 - Vaissière, Bernard E. A1 - Veldtman, Ruan A1 - Ward, Kimiora L. A1 - Westphal, Catrin A1 - Potts, Simon G. T1 - Delivery of crop pollination services is an insufficient argument for wild pollinator conservation JF - Nature Communications N2 - There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost- effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost- effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. KW - ecosystem services KW - european countries KW - abundance KW - native bees KW - biodiversity conservation KW - plant diversity KW - fruit set KW - productivity KW - decline KW - pollen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151879 VL - 6 IS - 7414 ER - TY - JOUR A1 - De Palma, Adriana A1 - Abrahamczyk, Stefan A1 - Aizen, Marcelo A. A1 - Albrecht, Matthias A1 - Basset, Yves A1 - Bates, Adam A1 - Blake, Robin J. A1 - Boutin, Céline A1 - Bugter, Rob A1 - Connop, Stuart A1 - Cruz-López, Leopoldo A1 - Cunningham, Saul A. A1 - Darvill, Ben A1 - Diekötter, Tim A1 - Dorn, Silvia A1 - Downing, Nicola A1 - Entling, Martin H. A1 - Farwig, Nina A1 - Felicioli, Antonio A1 - Fonte, Steven J. A1 - Fowler, Robert A1 - Franzen, Markus Franzén A1 - Goulson, Dave A1 - Grass, Ingo A1 - Hanley, Mick E. A1 - Hendrix, Stephen D. A1 - Herrmann, Farina A1 - Herzog, Felix A1 - Holzschuh, Andrea A1 - Jauker, Birgit A1 - Kessler, Michael A1 - Knight, M. E. A1 - Kruess, Andreas A1 - Lavelle, Patrick A1 - Le Féon, Violette A1 - Lentini, Pia A1 - Malone, Louise A. A1 - Marshall, Jon A1 - Martínez Pachón, Eliana A1 - McFrederick, Quinn S. A1 - Morales, Carolina L. A1 - Mudri-Stojnic, Sonja A1 - Nates-Parra, Guiomar A1 - Nilsson, Sven G. A1 - Öckinger, Erik A1 - Osgathorpe, Lynne A1 - Parra-H, Alejandro A1 - Peres, Carlos A. A1 - Persson, Anna S. A1 - Petanidou, Theodora A1 - Poveda, Katja A1 - Power, Eileen F. A1 - Quaranta, Marino A1 - Quintero, Carolina A1 - Rader, Romina A1 - Richards, Miriam H. A1 - Roulston, T’ai A1 - Rousseau, Laurent A1 - Sadler, Jonathan P. A1 - Samnegård, Ulrika A1 - Schellhorn, Nancy A. A1 - Schüepp, Christof A1 - Schweiger, Oliver A1 - Smith-Pardo, Allan H. A1 - Steffan-Dewenter, Ingolf A1 - Stout, Jane C. A1 - Tonietto, Rebecca K. A1 - Tscharntke, Teja A1 - Tylianakis, Jason M. A1 - Verboven, Hans A. F. A1 - Vergara, Carlos H. A1 - Verhulst, Jort A1 - Westphal, Catrin A1 - Yoon, Hyung Joo A1 - Purvis, Andy T1 - Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases JF - Scientific Reports N2 - Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises. KW - bee community KW - land-use change KW - intensification KW - geographic biases KW - taxonomic biases KW - global dataset Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167642 VL - 6 ER - TY - JOUR A1 - Holzschuh, Andrea A1 - Dainese, Matteo A1 - Gonzalez-Varo, Juan P. A1 - Mudri-Stojnic, Sonja A1 - Riedinger, Verena A1 - Rundlöf, Maj A1 - Scheper, Jeroen A1 - Wickens, Jennifer B. A1 - Wickens, Victoria J. A1 - Bommarco, Riccardo A1 - Kleijn, David A1 - Potts, Simon G. A1 - Roberts, Stuart P. M. A1 - Smith, Henrik G. A1 - Vilà, Montserrat A1 - Vujic, Ante A1 - Steffan-Dewenter, Ingolf T1 - Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe JF - Ecology Letters N2 - Mass-flowering crops (MFCs) are increasingly cultivated and might influence pollinator communities in MFC fields and nearby semi-natural habitats (SNHs). Across six European regions and 2 years, we assessed how landscape-scale cover of MFCs affected pollinator densities in 408 MFC fields and adjacent SNHs. In MFC fields, densities of bumblebees, solitary bees, managed honeybees and hoverflies were negatively related to the cover of MFCs in the landscape. In SNHs, densities of bumblebees declined with increasing cover of MFCs but densities of honeybees increased. The densities of all pollinators were generally unrelated to the cover of SNHs in the landscape. Although MFC fields apparently attracted pollinators from SNHs, in landscapes with large areas of MFCs they became diluted. The resulting lower densities might negatively affect yields of pollinator- dependent crops and the reproductive success of wild plants. An expansion of MFCs needs to be accompanied by pollinator-supporting practices in agricultural landscapes. KW - wild plant pollination KW - Colony growth KW - Densities KW - Context KW - crop pollination KW - Oilseed rape KW - Nesting resources KW - Bee abundance KW - Yield KW - Richness KW - Habitats KW - Agricultural intensification KW - agri-environment schemes KW - biofuels KW - ecosystem services KW - field boundaries KW - landscape compositionv KW - non-crop habitats KW - semi-natural habitats KW - spillover Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187356 VL - 19 IS - 10 ER - TY - JOUR A1 - Schlinkert, Hella A1 - Ludwig, Martin A1 - Batáry, Péter A1 - Holzschuh, Andrea A1 - Kovács-Hostyánszki, Anikó A1 - Tscharntke, Teja A1 - Fischer, Christina T1 - Forest specialist and generalist small mammals in forest edges and hedges JF - Wildlife Biology N2 - Agricultural intensification often leads to fragmentation of natural habitats, such as forests, and thereby negatively affects forest specialist species. However, human introduced habitats, such as hedges, may counteract negative effects of forest fragmentation and increase dispersal, particularly of forest specialists. We studied effects of habitat type (forest edge versus hedge) and hedge isolation from forests (connected versus isolated hedge) in agricultural landscapes on abundance, species richness and community composition of mice, voles and shrews in forest edges and hedges. Simultaneously to these effects of forest edge/hedge type we analysed impacts of habitat structure, namely percentage of bare ground and forest edge/hedge width, on abundance, species richness and community composition of small mammals. Total abundance and forest specialist abundance (both driven by the most abundant species Myodes glareolus, bank vole) were higher in forest edges than in hedges, while hedge isolation had no effect. In contrast, abundance of habitat generalists was higher in isolated compared to connected hedges, with no effect of habitat type (forest edge versus hedge). Species richness as well as abundance of the most abundant habitat generalist Sorex araneus (common shrew), were not affected by habitat type or hedge isolation. Decreasing percentage of bare ground and increasing forest edge/hedge width was associated with increased abundance of forest specialists, while habitat structure was unrelated to species richness or abundance of any other group. Community composition was driven by forest specialists, which exceeded habitat generalist abundance in forest edges and connected hedges, while abundances were similar to each other in isolated hedges. Our results show that small mammal forest specialists prefer forest edges as habitats over hedges, while habitat generalists are able to use unoccupied ecological niches in isolated hedges. Consequently even isolated hedges can be marginal habitats for forest specialists and habitat generalists and thereby may increase regional farmland biodiversity. KW - forest specialists KW - forest fragmentation KW - forest hedges KW - forest edges Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168333 VL - 22 IS - 3 ER -