TY - THES A1 - Slobodskyy, Taras T1 - Semimagnetic heterostructures for spintronics T1 - Semimagnetische Heterostrukturen für Spintronik N2 - Für zukünftige Technologien ist die Erforschung von der verwendeten Teilchen nötig. Spintronik ist ein modernes Gebiet der Physik, welches neben der Ladung auch die Spineigenschaften als zus¨atzlichen Freiheitsgrad nutzbar macht. Der ”conductivity mismatch” stellt ein fundamentales Problem für elektrische Spininjektion aus einem ferromagnetischem Metal in einen diffusiven Halbleiter dar. Daher müssen andere Methoden für die Injektion spin-polarisierter Ladungsträger benutzt werden. Mit einem Tunnelkontakt ist es möglich, eine hoch spin-polarisierte, Raumtemperatur Tunnel-Injektion zu erzielen. Wir benutzten einen neuen Ansatz und verwendeten magnetische RTDs zur Spinmanipulation. In dieser Arbeit wurden die Eigenschaften von magnetischen, resonanten Tunneldioden (RTDs) aus rheinen II-VI-Halbleitern in ihrer Verwendung für die Spintronik beschrieben. Wachstumsbedingungen wurden optimiert, um das Peak-to-Valley-Verhältnis zu vergrößern. Das Design der RTDs wurde optimiert, um spinbezogene Transporteffekte beobachten zu könen. Mit einem externen Magnetfeld war Spinmanipulation möglich. Selbstorganisierte CdSe Quanten-Strukturen wurden hergestelt und mit optischen Techniken untersucht. Sie würden in (Zn,Be)Se Tunnelbarrieren eingebettet, so dass ihre Eigenschaften durch resonantes Tunneln zugänglich wurden. N2 - In pursuit of a novel generation of devices, exploration of spin properties of the particles is needed. Spintronics is a modern field in physics which exploits spin properties to be used in addition to the charge degree of freedom. Since the conductivity mismatch problem presents a fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor [SFM+00], other means for injecting spin-polarized carriers must be used. With a tunnel contact, it is possible to achieve a highly spin-polarized room-temperature tunnel injection [JWS+05]. We used a novel approach and applied magnetic RTDs for spin manipulation. In this work, properties of all-II-VI magnetic resonant tunneling diodes (RTDs), as applied to spintronics, were reported. Growth conditions were optimized to increase the peak-to-valley ratio, and the design of the RTDs was optimized for observation of spin related transport effects. When an external magnetic field was applied, spin manipulation became possible. Selforganized CdSe quantum structures were grown and investigated using optical means. After embedding them into a (Zn,Be)Se tunneling barrier, the properties were assessed by the resonant tunneling. KW - Heterostruktur-Bauelement KW - Semimagnetischer Halbleiter KW - Magnetoelektronik KW - Halbleiter KW - Spintronik KW - ZnMnSe KW - Semiconductors KW - Spintronics KW - ZnMnSe Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21011 ER - TY - THES A1 - Pappert, Katrin T1 - Anisotropies in (Ga,Mn)As - Measurement, Control and Application in Novel Devices T1 - Anisotropien in (Ga,Mn)As - Messung, Kontrolle und Anwendung in neuartigen Bauelementen N2 - Ferromagnetic semiconductors (FS) promise the integration of magnetic memory functionalities and semiconductor information processing into the same material system. The prototypical FS (Ga,Mn)As has become the focus of semiconductor spintronics research over the past years. The spin-orbit mediated coupling of magnetic and semiconductor properties in this material gives rise to many novel transport-related phenomena which can be harnessed for device applications. In this thesis we address challenges faced in the development of an all-semiconductor memory architecture. A starting point for information storage in FS is the knowledge of their detailed magnetic anisotropy. The first part of this thesis concentrates on the investigation of the magnetization behaviour in compressively strained (Ga,Mn)As by electrical means. The angle between current and magnetization is monitored in magnetoresistance(MR) measurements along many in-plane directions using the Anisotropic MR(AMR) or Planar Hall effect(PHE). It is shown, that a full angular set of such measurements displayed in a color coded resistance polar plot can be used to identify and quantitatively determine the symmetry components of the magnetic anisotropy of (Ga,Mn)As at 4 K. We compile such "anisotropy fingerprints" for many (Ga,Mn)As layers from Wuerzburg and other laboratories and find the presence of three symmetry terms in all layers. The biaxial anisotropy term with easy axes along the [100] and [010] crystal direction dominates the magnetic behaviour. An additional uniaxial term with an anisotropy constant of ~10% of the biaxial one has its easy axis along either of the two <110> directions. A second contribution of uniaxial symmetry with easy axis along one of the biaxial easy axes has a strength of only ~1% of the biaxial anisotropy and is therefore barely visible in standard SQUID measurements. An all-electrical writing scheme would be desirable for commercialization. We report on a current assisted magnetization manipulation experiment in a lateral (Ga,Mn)As nanodevice at 4 K (far below Tc). Reading out the large resistance signal from DW that are confined in nanoconstrictions, we demonstrate the current assisted magnetization switching of a small central island through a hole mediated spin transfer from the adjacent leads. One possible non-perturbative read-out scheme for FS memory devices could be the recently discovered Tunneling Anisotropic MagnetoResistance (TAMR) effect. Here we clarify the origin of the large amplification of the TAMR amplitude in a device with an epitaxial GaAs tunnel barrier at low temperatures. We prove with the help of density of states spectroscopy that a thin (Ga,Mn)As injector layer undergoes a metal insulator transition upon a change of the magnetization direction in the layer plane. The two states can be distinguished by their typical power law behaviour in the measured conductance vs voltage tunneling spectra. While all hereto demonstrated (Ga,Mn)As devices inherited their anisotropic magnetic properties from their parent FS layer, more sophisticated FS architectures will require locally defined FS elements of different magnetic anisotropy on the same wafer. We show that shape anisotropy is not applicable in FS because of their low volume magnetization. We present a method to lithographically engineer the magnetic anisotropy of (Ga,Mn)As by submicron patterning. Anisotropic strain relaxation in submicron bar structures (nanobars) and the related deformation of the crystal lattice introduce a new uniaxial anisotropy term in the energy equation. We demonstrate by both SQUID and transport investigations that this lithographically induced uniaxial anisotropy overwrites the intrinsic biaxial anisotropy at all temperatures up to Tc. The final section of the thesis combines all the above into a novel device scheme. We use anisotropy engineering to fabricate two orthogonal, magnetically uniaxial, nanobars which are electrically connected through a constriction. We find that the constriction resistance depends on the relative orientation of the nanobar magnetizations, which can be written by an in-plane magnetic field. This effect can be explained with the AMR effect in connection with the field line patterns in the respective states. The device offers a novel non-volatile information storage scheme and a corresponding non-perturbative read-out method. The read out signal is shown to increase drastically in samples with partly depleted constriction region. This could be shown to originate in a magnetization direction driven metal insulator transition of the material in the constriction region. N2 - Ferromagnetische Halbleiter (FS) versprechen die Integration von magnetischen Eigenschaften für Speicheranwendungen und halbleitenden Eigenschaften zur Informationsverarbeitung innerhalb des selben Materialsystems. (Ga,Mn)As ist als Modellsystem in den letzten Jahren in den Fokus der Halbleiterspintronik gerückt. Die Kopplung der magnetischen und elektrischen Eigenschaften über die Spin-Bahn-Wechselwirkung ist die Ursache vieler neuer Transportphänomene. Sie sind Grundlage neuartiger Anwendungen und Bauteildesigns. In dieser Arbeit beschäftigen wir uns mit den Herausforderungen, die die Entwicklung einer halbleitenden Speicherarchitektur mit sich bringt. Die Kenntnis der magnetischen Anisotropie ist die Grundlage für die magnetische Informationsspeicherung. Der erste Teil der Arbeit beschäftigt sich deshalb mit der Untersuchung des Verhaltens der Magnetisierung in kompressiv verspannten (Ga,Mn)As Schichten durch elektrische Messungen. Bei Magnetfeld-Scans entlang vieler Richtungen in der Schichtebene wird der von Strom und Magnetisierung eingeschlossene Winkel mittels des Anisotropen Magnetowiderstandseffektes(AMR) oder des Planaren Hall Effektes(PHE) beobachtet. Eine winkelabhängige Reihe solcher Messungen, dargestellt in einem farbkodierten Widerstandspolardiagramm, wird zur Identifizierung und quantitativen Bestimmung der Symmetriekomponenten der magnetischen Anisotropie bei 4 K verwendet. Solche „Anisotropiefingerabdrücke" von vielen (Ga,Mn)As Schichten aus Würzburg und anderen Laboratorien bestätigen das Vorhandensein von drei Anisotropiekomponenten bei 4 K. Der vierzählige Anteil mit weichen Achsen entlang der [100] und [010] Kristallrichtung dominiert die magnetischen Eigenschaften. Ein weiterer Anteil, mit zweizähliger Symmetrie, typische Anisotropiekonstante ~10% der vierzähligen, hat seine weiche Achse entlang einer <110> Richtungen. Eine zweite zweizählige Komponente mit weicher Achse entlang [100] oder [010] wird wegen seiner kleinen Anisotropiekonstante (1% der vierzähligen) in SQUID Messungen oft übersehen. Elektrisches Schreiben wäre für kommerzielle Anwendungen interessant. Wir demonstrieren strominduziertes Magnetisierungsschalten in einer lateralen (Ga,Mn)As Struktur bei 4 K. Wir lesen den großen Widerstand aus, der durch das geometrische Confinement von Domänenwänden in Verengungen entsteht. Das stromunterstützte Umschalten der Magnetisierung einer kleinen Insel durch ladungsträger-übermittelten Spin-Transfer von den größeren Zuleitungen kann nachgewiesen werden. Eine Moeglichkeit zur nichtzerstörenden Messung des Magnetisierungszustandes eines Halbleiterspeicherelementes ist die Nutzung des Anisotropen Tunnelmagnetowiderstandseffekts (TAMR). Hier wird der Ursprung der großen Verstärkung des Effektes in einer Struktur mit epitaktisch gewachsenener Tunnelbarriere bei niedrigen Temperaturen untersucht und erklärt. Es wird gezeigt, dass eine dünne (Ga,Mn)As Injektorschicht vom metallischen in den isolierenden Zustand übergeht, wenn die Magnetisierungsrichtung in der Schichtebene gedreht wird. Zustände auf der metallischen Seite des MIT können leicht von Zuständen auf der isolierenden Seite am Anstieg der Tunnelleitfähigkeitskennlinie unterschieden werden. Um den Anforderungen von komplexeren Architekturen und Designs gerecht zu werden, wird hier eine Methode eingeführt, um erstmals die magnetische Anisotropie in (Ga,Mn)As lokal zu kontrollieren. Typische (Ga,Mn)As Strukturen habe eine vernachlässigbar kleine Formanisotropie. Die neuartige Methode zur lokalen Einstellung der magnetischen Anisotropie, beruht auf der Mikrostrukturierung und der damit verbundenen anisotropen Relaxation des Kristallgitters. SQUID- und Transportmessungen demonstrieren die uniaxiale magnetische Anisotropie der lithographisch definierten Submikrometer-Streifen (Nanobars), die im gesamten Temperaturbereich von 4 K bis zu Tc die magnetischen Eigenschaften der Strukturen bestimmt. Im letzten Teil der Arbeit nutzen wir die Anisotropiekontrolle zum Design eines nicht-flüchtigen ferromagnetischen Halbleiter-Speicherelementes. Zwei senkrecht zueinander angeordnete, magnetisch uniaxiale Nanobars sind an einer Ecke über eine Verengung elektrisch verbunden. Die relative Orientierung ihrer Magnetisierungsvektoren wird durch ein Magnetfeld eingestellt. Der geschriebene Magnetisierungszustand bleibt bei ausgeschaltetem Feld erhalten und ist durch die Messung des elektrischen Widerstandes der Verengung auslesbar. Feldlinienbilder der verschiedenen magnetischen Zustände in Kombination mit dem AMR Effekt können dieses Verhalten erklären. Das Auslesesignal, also der Widerstandsunterschied zwischen den Zuständen, kann bedeutend verstärkt werden, indem eine Struktur mit teilweise verarmter Verengung verwendet wird. Wie in der TAMR Struktur, ist die Verstärkung auf einen Metall-Isolator-Uebergang beim Drehen der Magnetisierung zurückzuführen. KW - Anisotropie KW - Magnetoelektronik KW - Ferromagnetikum KW - Halbleiter KW - Spintronik KW - "(Ga KW - Mn)As" KW - Anisotropie KW - Bauelemente KW - Datenspeicher KW - Spintronics KW - "(Ga KW - Mn)As" KW - Anisotropy KW - devices KW - memory Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23370 ER - TY - THES A1 - Mark, Stefan T1 - A Magnetic Semiconductor based Non-Volatile Memory and Logic Element T1 - Ein auf magnetischen Halbleiter basierendes nicht-flüchtiges Speicher- und Logik-Element N2 - For the realization of a programmable logic device, or indeed any nanoscale device, we need a reliable method to probe the magnetization direction of local domains. For this purpose we extend investigations on the previously discovered tunneling anisotropic magneto resistance effect (TAMR) by scaling the pillar size from 100 µm down to 260 nm. We start in chapter 4 with a theoretical description of the TAMR effect and show experimental data of miniaturized pillars in chapter 5. With such small TAMR probes we are able to locally sense the magnetization on the 100 nm scale. Sub-micron TAMR and anisotropic magneto resistance (AMR) measurements of sub-millimeter areas show that the behavior of macroscopic (Ga,Mn)As regions is not that of a true macrospin, but rather an ensemble average of the behavior of many nearly identical macrospins. This shows that the magnetic anisotropies of the local regions are consistent with the behavior extracted from macroscopic characterization. A fully electrically controllable read-write memory device out the ferromagnetic semiconductor (Ga,Mn)As is presented in chapter 6. The structure consists of four nanobars which are connected to a circular center region. The first part of the chapter describes the lithography realization of the device. We make use of the sub-micron TAMR probes to read-out the magnetization state of a 650 nm central disk. Four 200 nm wide nanobars are connected to the central disk and serve as source and drain of a spin-polarized current. With the spin-polarized current we are able to switch the magnetization of the central disk by means of current induced switching. Injecting polarized holes with a spin angular momentum into a magnetic region changes the magnetization direction of the region due to the p-d exchange interaction between localized Mn spins and itinerant holes. The magnetization of the central disk can be controlled fully electrically and it can serve as one bit memory element as part of a logic device. In chapter 7 we discuss the domain wall resistance in (Ga,Mn)As. At the transition from nanobars to central disk we are able to generate 90° and 180° domain walls and measure their resistance. The results presented from chapter 5 to 7 combined with the preexisting ultracompact (Ga,Mn)As-based memory cell of ref. [Papp 07c] are the building blocks needed to realize a fully functioning programmable logic device. The work of ref. [Papp 07c] makes use of lithographically engineered strain relaxation to produce a structure comprised of two nanobars with mutually orthogonal uniaxial easy axes, connected by a narrow constriction. Measurements showed that the resistance of the constriction depends on the relative orientation of the magnetization in the two bars. The programmable logic device consists of two central disks connected by a small constriction. The magnetization of the two central disks are used as the input bits and the constriction serves as the output during the logic operation. The concept is introduced in the end of chapter 6 and as an example for a logic operation an XOR gate is presented. The functionality of the programmable logic scheme presented here can be straightforwardly extended to produce multipurpose functional elements, where the given geometry can be used as various different computational elements depending on the number of input bits and the chosen electrical addressing. The realization of such a programmable logic device is shown in chapter 8, where we see that the constriction indeed can serve as a output of the logic operation because its resistance is dependent on the relative magnetization state of both disks. Contrary to ref. [Papp 07c], where the individual magnetic elements connected to the constriction only have two non-volatile magnetic states, each disk in our scheme connected to the constriction has four non-volatile magnetic states. Switching the magnetization of a central disk with an electrical current does not only change the TAMR read-out of the respective disk, it also changes the resistance of the constriction. The resistance polar plot of the constriction maps the relative magnetization states of the individual disks. The presented device design serves as an all-electrical, all-semiconductor logic element. It combines a memory cell and data processing in a single monolithic paradigm. N2 - Für die Realisierung eines programmierbaren Logikelements oder beliebiger nanometer großer Bauteile, brauchen wir eine verlässlige Methode, um die Magnetisierungsrichtung lokaler Domänen auzulesen. Dafür erweitern wir die Untersuchungen an TAMR (tunneling magneto resistance) Strukturen und skalieren die Fläche des Tunnelkontakts von 100 µm auf 260 nm. In Kapitel 4 geben wir zunächst eine theoretische Beschreibung des TAMR Effekts und zeigen darauf im folgenden Kapitel 5 experimentelle Daten der miniaturisierten Tunnelkontakte. Mit diesen TAMR-Kontakten ist es möglich die Magnetisierung lokal in einer Grössenordnung von 100 nm zu detektieren. Sub-micron TAMR-Messungen und anisotrope Magnetowiderstandmessungen (AMR) an sub-millimeter Gebieten zeigen, dass das Verhalten von makrokopischen (Ga,Mn)As nicht das eines Makrospins ist, sondern ein Ensembledurchschnitt von vielen fast identischen Makrospins. Dieses Ergebnis ist mit der makroskopischen Beschreibung der lokalen magnetischen Aniotropien konform.\\ Ein rein elektrisch kontrollierbares Read-Write Speicherelement aus dem ferromagnetischen Halbleiter (Ga,Mn)As wird in Kapitel 6 gezeigt. Das Element besteht aus vier 200 nm breiten Streifen, die mit einer kreisförmigen zentralen Disc verbunden sind. Der erste Teil des Kapitels beschreibt die einzelnen Lithographieschritte zur Herstellung des Elements. Zum Auslesen der Magnetisierungsrichtung der zentralen Disc mit einem Durchmesser von 650 nm verwenden wir einen miniaturisierten TAMR-Kontakt. Die 200 nm breiten Streifen dienen als Quelle eines spinpolarisierten Stromes in die zentrale Disc. Das Injezieren von polarisierten Löchern mit einem Spin-Drehimpuls in eine magnetische Region verändert die Magnetisierung der Region durch p-d Austauschwechselwirkung zwischen lokalisierten Mn-Spins und den Löchern. Die Magnetisierung der zentralen Disc kann rein elektrisch kontrolliert werden and als Bit eines Logikelementes verwendet werden. In Kapitel 7 untersuchen wir den Domänenwiderstand in (Ga,Mn)As. Am Übergang von den Streifen zur zentralen Disc ist es möglich 90°- und 180° Domänenwände zu erzeugen und deren Widerstand zu messen.\\ Die Ergebnisse von Kapitel 5 bis 7, kombiniert mit dem bereits existierenden Ergebnissen einer ultrakompakten (Ga,Mn)As-basierenden Speicherzelle von Ref. [Papp 07c], sind die Schlüsselelemente die man zur Realisierung eines programmierbaren Logikelements benötigt. Die Arbeit von Referenz [Papp 07c] nutzt Lithographie induzierte Deformationsrelaxation, um eine Struktur zu erzeugen, die aus zwei senkrechten Streifen besteht und durch eine Verengung verbunden sind. Der Widerstand dieser Verengung ist von der relativen Magnetisierungsorientierung der beiden Streifen abhängig. Das programmierbare Logikelement besteht aus zwei zentralen Discs, die mittels einer schmalen Verengung verbunden sind. Die Magnetisierung der beiden zentralen Discs dienen als Eingänge und die Verengung als Ausgang während der Logikoperation. Das Konzept wird am Ende des sechsten Kapitels eingeführt und als Beispiel für eine Logikoperation wird ein XOR-Gate präsentiert. Die Funktionalität des hier gezeigten programmierbaren Logikschemas kann Problemlos auf ein multifunktionales Element erweitert werden. Diese Geometrie kann abhängig von der Anzahl der Eingänge und der gewählten Adressierung für verschiedene Rechenelemente genutzt werden. \\ Die Realisierung eines programmierbaren Logikelements ist in Kapitel 8 gezeigt. Der Widerstand der Verengung hängt von der relativen Magnetisierungsrichtung der beiden zentralen Discs ab und wird als Ausgang während der Logikoperation verwendet. Im Gegensatz zu Referenz [Papp 07c], indem die einzelnen über die Verengung verbundenen magnetischen Elemente jeweils nur zwei nicht-flüchtige magnetische Zustände besitzen, hat jede zentrale Disc in unserem Schema vier nicht-flüchtige magnetische Zustände. Das Verändern der Magnetisierungsrichtung einer zentralen Disc durch einen elektrischen Strom kann durch den jeweiligen TAMR-Kontakt und durch die Widerstandänderung der Verengung gemessen werden. Der Widerstands-Fingerabdruck (resistance polar plot) der Verengung zeigt die verschiedenen relativen Magnetisierungszutände der zentralen Discs.\\ Das hier präsentierte Konzept dient als reines Halbleiter und rein-elektrisches Logikelement. Es kombiniert eine Speicherzelle und Datenverarbeitung in einem neuartigen monolithischen Bauelement. KW - Magnetischer Halbleiter KW - Magnetische Halbleiter KW - Magnetische Anisotropien KW - Spinelektronik KW - magnetic semiconductors KW - magnetic anisotropy KW - Magnetic properties of thin films interfaces KW - Spinelectronic KW - Magnetische Anisotropie KW - Spintronik Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71223 ER - TY - THES A1 - Rüth, Michael T1 - A Comprehensive Study of Dilute Magnetic Semiconductor Resonant Tunneling Diodes T1 - Umfassende Untersuchung von resonanten Tunneldioden aus verdünnt-magnetischen Halbleitern N2 - We investigate transport measurements on all II-VI semiconductor resonant tunneling diodes (RTDs). Being very versatile, the dilute magnetic semiconductor (DMS) system (Zn,Be,Mn,Cd)Se is a perfect testbed for various spintronic device designs, as it allows for separate control of electrical and magnetic properties. In contrast to the ferromagnetic semiconductor (Ga,Mn)As, doping ZnSe with Mn impurities does not alter the electrical properties of the semiconductor, as the magnetic dopant is isoelectric in the ZnSe host. N2 - Diese Doktorarbeit befasst sich mit Transportmessungen an resonanten Tunneldioden (engl. resonant tunneling diode, RTD), welche vollst� andig aus II-VI Halbleitermaterial bestehen. Das verd� unnt magnetische (engl. dilute magnetic semiconductor, DMS) Halbleitermaterialsystem (Zn,Be,Mn,Cd)Se ist sehr vielseitig und eignet sich hervorragend als Testsystem f� ur diverse Spintronik Bauelemente, denn magnetische und elektrische Eigenschaften lassen sich getrennt voneinander einstellen. Im Gegensatz zum ferromagnetischen Halbleiter (Ga,Mn)As ver� andert das Dotieren von ZnSe mit Mn nicht die elektrischen Eigenschaften des Halbleiters. KW - Semimagnetischer Halbleiter KW - Resonanz-Tunneleffekt KW - Halbleiter KW - Resonante Tunneldioden KW - Spintronik KW - dilute magnetic semiconductors KW - spintronics KW - resonant tunneling diodes Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71472 ER - TY - THES A1 - Frey, Alexander T1 - Spin-Dependent Tunneling and Heterovalent Heterointerface Effects in Diluted Magnetic II-VI Semiconductor Heterostructures T1 - Spinabhängiges Tunneln und heterovalente Heterogrenzflächen in verdünnt magnetischen II-VI Halbleiter Heterostrukturen N2 - The contribution of the present thesis consists of three parts. They are centered around investigating certain semiconductor heterointerfaces relevant to spin injection, exploring novel, diluted magnetic single barrier tunneling structures, and further developing diluted magnetic II-VI resonant tunneling diodes. N2 - Der Beitrag der vorliegenden Arbeit besteht aus drei Teilen. Diese beschäftigen sich mit der Untersuchung bestimmter, für Spininjektion relevanter, Halbleiter Heterogrenzflächen, mit neuartigen, verdünnt magnetischen Einzelbarrieren-Tunnelstrukturen, sowie mit der Weiterentwicklung von verdünnt magnetischen Resonanz-Tunneldioden. KW - Zwei-Sechs-Halbleiter KW - Heterostruktur KW - Spintronik KW - II-VI Semiconductors KW - Diluted magnetic semiconductors KW - resonant tunneling KW - spintronics KW - heterovalent heterointerfaces KW - Spin KW - Halbleiter KW - Molekularstrahlepitaxie KW - Resonanz-Tunneleffekt KW - Tunneleffekt KW - Röntgendiffraktometrie KW - Magnetowiderstand Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78133 ER - TY - THES A1 - Henn, Tobias T1 - Hot spin carriers in cold semiconductors : Time and spatially resolved magneto-optical Kerr effect spectroscopy of optically induced electron spin dynamics in semiconductor heterostructures T1 - Heiße Spinträger in kalten Halbleitern N2 - The present thesis “Hot spin carriers in cold semiconductors” investigates hot carrier effects in low-temperature photoinduced magneto-optical Kerr effect (MOKE) microscopy of electron spins in semiconductor heterostructures. Our studies reveal that the influence of hot photocarriers in magneto-optical pump-probe experiments is twofold. First, it is commonly assumed that a measurement of the local Kerr rotation using an arbitrary probe wavelength maps the local electron spin polarization. This is the fundamental assumption that underlies the widely used two-color MOKE microscopy technique. Our continuous-wave (cw) spectroscopy experiments demonstrate that this assumption is not correct. At low lattice temperatures the nonresonant spin excitation by the focused pump laser inevitably leads to a strong heating of the electron system. This heating, in turn, locally modifies the magneto-optical coefficient which links the experimentally observed Kerr rotation to the electron spin polarization. As a consequence, the spin-induced local Kerr rotation is augmented by spin-unrelated changes in the magneto-optical coefficient. A spatially resolved measurement of the Kerr rotation then does not correctly map the electron spin polarization profile. We demonstrate different ways to overcome this limitation and to correctly measure the electron spin profile. For cw spectroscopy we show how the true local electron spin polarization can be obtained from a quantitative analysis of the full excitonic Kerr rotation spectrum. Alternatively, picosecond MOKE microscopy using a spectrally broad probe laser pulse mitigates hot-carrier effects on the magneto-optical spin detection and allows to directly observe the time-resolved expansion of optically excited electron spin packets in real-space. Second, we show that hot photocarriers strongly modify the spin diffusion process. Owing to their high kinetic energy, hot carriers greatly enhance the electron spin diffusion coefficient with respect to the intrinsic value of the undisturbed system. Therefore, for steady-state excitation the spin diffusivity is strongly enhanced close to the pump spot center where hot electrons are present. Similarly, for short delays following pulsed excitation the high initial temperature of the electrons leads to a very fast initial expansion of the spin packet which gradually slows as the electrons cool down to the lattice temperature. While few previous publications have recognized the possible influence of hot carriers on the electron spin transport properties, the present work is the first to directly observe and quantify such hot carrier contributions. We develop models which for steady-state and pulsed excitation quantitatively describe the experimentally observed electron spin diffusion. These models are capable of separating the intrinsic spin diffusivity from the hot electron contribution, and allow to obtain spin transport parameters of the undisturbed system. We perform extensive cw and time-resolved spectroscopy studies of the lattice temperature dependence of the electron spin diffusion in bulk GaAs. Using our models we obtain a consistent set of parameters for the intrinsic temperature dependence of the electron spin diffusion coefficient and spin relaxation time and the hot carrier contributions which quantitatively describes all experimental observations. Our analysis unequivocally demonstrates that we have, as we believe for the first time, arrived at a coherent understanding of photoinduced low-temperature electron spin diffusion in bulk semiconductors. N2 - Die vorliegende Arbeit untersucht den Einfluss heißer Ladungsträger in pump-probe magneto-optischer Kerr-Effekt (MOKE) Tieftemperatur-Mikroskopie-Messungen der optisch induzierten Elektronenspin-Dynamik in Galliumarsenid-basierten Halbleiterheterostrukturen. Die Arbeit zeigt, dass dieser Einfluss von zweierlei Art ist. Der erste Aspekt betrifft die magneto-optische Elektronenspin-Detektion. Es wird gewöhnlich angenommen, dass eine Messung der lokalen Kerr-Rotation unter Verwendung einer beliebigen Probelaser-Wellenlänge korrekt die lokale Elektronenspinpolarisation abbildet. Diese Prämisse ist die fundamentale Grundlage der MOKE Elektronenspin-Mikroskopie. Unsere Dauerstrich-Spektroskopie-Ergebnisse belegen, dass diese Annahme im Allgemeinen nicht korrekt ist. Bei tiefen Gittertemperaturen führt die nichtresonante optische Anregung spinpolarisierter Elektronen zu einer signifikanten Heizung des Elektronensystems. Diese Heizung modifiziert lokal den magneto-optischen Koeffizienten, der die im Experiment beobachtete Kerr-Rotation mit der zu messenden Elektronenspinpolarisation verknüpft. Als Konsequenz ist die spininduzierte lokale Kerr-Rotation von spinunabhängigen Änderungen des der magneto-optischen Koeffizienten überlagert. Eine ortsaufgelöste Messung der Kerr-Rotation bildet dann im Allgemeinen nicht korrekt die lokale Elektronenspinpolarisation ab. Wir demonstrieren verschiedene Möglichkeiten, diese Einschränkung zu überwinden und das korrekte Elektronenspin-Profil zu bestimmen. Für Dauerstrich-Anregung zeigen wir, dass das Elektronenspin-Profil korrekt durch eine quantitative Analyse des lokalen exzitonischen Kerr-Rotations-Spektrums ermittelt werden kann. Alternativ minimiert Pikosekunden-zeitaufgelöste MOKE Mikroskopie unter Verwendung eines spektral breiten gepulsten Probelasers den Einfluss heißer Elektronen auf die magneto-optische Spin-Detektion und erlaubt die direkte Beobachtung der diffusiven Ausbreitung optisch erzeugter Elektronenspin-Pakete im Realraum. Als zweites Hauptergebnis zeigen wir, dass optische angeregte heiße Ladungsträger signifikant die Spindiffusion beeinflussen. Durch ihre hohe kinetischen Energie erhöhen heiße Photoladungsträger stark den Elektronenspin-Diffusionskoeffizienten im Vergleich zum intrinsischen Wert des ungestörten Systems. Aus diesem Grund ist bei tiefen Gittertemperaturen für lokale Dauerstrich-Anregung der Spin-Diffusionskoeffizient in der Nähe des fokussierten Pumplaserstrahls, in der heiße Elektronen vorhanden sind, stark erhöht. Analog führt für kurze Zeiten nach gepulster optischer Anregung die hohe anfängliche Elektronentemperatur zu einer sehr schnellen initialen Ausbreitung des Spin-Paktes, welche sich allmählich verlangsamt, während die Elektronen auf die Gittertemperatur abkühlen. Während einzelne frühere Arbeiten bereits den möglichen Einfluss heißer Ladungsträger auf den Elektronenspin-Transport erkannten, ist die vorliegende Arbeit die erste, die die Wirkung heißer Träger auf die Elektronenspin-Diffusion direkt beobachtet und quantifiziert. Wir entwickeln verschiedene Modelle, die für gepulste und Dauerstrich-Anregung quantitativ die Elektronenspin-Diffusion beschreiben. Diese Modelle sind in der Lage, die intrinsische Spindiffusivität von den Beiträgen heißer Ladungsträger zu trennen und erlauben, die Spintransport-Eigenschaften des ungestörten Systems zu bestimmen. Wir untersuchen in zeitaufgelösten und Dauerstrich-Anregungs-Experimenten die Gittertemperatur-Abhängigkeit der Spindiffusion in n-dotiertem Volumen-GaAs. Mit Hilfe unserer Modelle ermitteln wir einen konsistenten Parameter-Satz für die intrinsische Temperaturabhängigkeit der Spinrelaxationszeit und des Elektronenspin-Diffusionskoeffizienten sowie der Beiträge heißer Ladungsträger, der quantitativ alle experimentellen Beobachtungen beschreibt. Damit haben wir erstmals ein kohärentes Verständnis der optisch induzierten Tieftemperatur-Elektronenspin-Diffusion in Halbleitern entwickelt. KW - Galliumarsenid KW - Optische Spektroskopie KW - Heterostruktur KW - spintronics KW - Spintronik KW - Elektronenspin KW - Halbleiterphysik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110265 ER - TY - THES A1 - Samiepour, Marjan T1 - Fabrication and characterization of CPP-GMR and spin-transfer torque induced magnetic switching T1 - Herstellung und Charakterisierung von CPP-GMR und Spin-Transfer-Drehmoment induzierten magnetisches Schalten N2 - Even though the unique magnetic behavior for ferromagnets has been known for thousands of years, explaining this interesting phenomenon only occurred in the 20th century. It was in 1920, with the discovery of electron spin, that a clear explanation of how ferromagnets achieve their unique magnetic properties came to light. The electron carries an intrinsic electric charge and intrinsic angular momentum. Use of this property in a device was achieved in 1998 when Fert and Gru¨nberg independently found that the resistance of FM/NM/FM trilayer depended on the angle between the magnetization of the two layers. This phenomena which is called giant magnetoresistance (GMR) brought spin transfer into mainstream. This new discovery created a brand new research fi called “spintronics” or “spin based electronics” which exploits the intrinsic spin of electron. As expected spintronics delivered a new generation of magnetic devices which are currently used in magnetic disk drives and magnetic random access memories (MRAM). The potential advantages of spintronics devices are non-volatility, higher speed, increased data density and low power consumption. GMR devices are already used in industry as magnetic memories and read heads. The quality of GMR devices can be increased by developing new magnetic materials and also by going down to nanoscale. The desired characteristic properties of these new materials are higher spin polarization, higher curie temperature and better spin filtering. Half-metals are a good candidate for these devices since they are expected to have high polarization. Some examples of half-metals are Half-Heusler alloy, full Heusler alloy and Perovskite or double Perovskite oxides. The devices discussed in this thesis have NiMnSb half-Heusler alloy and permalloy as the ferromagnetic layers separated by Cu as the nonmagnetic layer. This dissertation includes mainly two parts, fabrication and characterization of nan- opillars. The layer stack used for the fabrication is Ru/Py/Cu/NiMnSb which is grown on an InP substrate with an (In,Ga)As buff by molecule beam epitaxy (MBE). A new method of fabrication using metal mask which has a higher yield of working samples over the previous method (using the resist mask) used in our group is discussed in detail. Also, the advantages of this new method and draw backs of the old method are explained thoroughly (in chapter 3). The second part (chapters 4 and 5) is focused on electrical measurements and charac- terization of the nanopillar, specially with regard to GMR and spin-transfer torque (STT) measurements. In chapter 4, the results of current perpendicular the plane giant mag- netoresistance (CPP-GMR) measurements at various temperatures and in-plane magnetic fi are presented. The dependence of CPP-GMR on bias current and shape anisotropy of the device are investigated. Results of these measurements show that the device has strong shape anisotropy. The following chapter deals with spin-transfer torque induced magnetic switching measurements done on the device. Critical current densities are on the order of 106 A/cm2, which is one order of magnitude smaller than the current industry standards. Our results show that the two possible magnetic configurations of the nanopillar (parallel and anti-parallel) have a strong dependence on the applied in-plane magnetic fi Fi- nally, four magnetic fi regimes based on the stability of the magnetic configuration (P stable, AP stable, both P and AP stable, both P and AP unstable) are identified. N2 - Obwohl das einzigartige ferromagnetische Verhalten seit Tausenden Jahren bekannt ist, traten Erklärungen zu diesem interessanten Phänomen erst im 20. Jahrhundert auf. Erst im Jahr 1920, mit der Entdeckung des Elekronenspin, gab es eine Vorstellung davon, wie die Ferromagnetika ihre einzigartigen magnetischen Eigenschaften erhalten. Die Elektronen sind sowohl Träger einer intrinsischen Ladung als auch eines intrinsichen Drehimpulses. Die Nutzung dieser Eigenschaften in Bauteilen wurde 1998 erreicht, als Fert und Grünberg unabhängig voneinander die Entdeckung machten, dass der Widerstand eines Dreischichtsystems bestehend aus FM/NM/FM abha¨ngig vom Winkel der Magnetisierung in den zwei ferromagnetischen Schichten ist. Dieses Phänomen, welches als Riesenmagnetwiderstand (GMR, Giant Magnetoresistance) bekannt ist, führte dazu, dass sich der Spintransport zu einem Mainstream entwickelte. Diese neuartige Entdeckung brachte ein ganz neues Forschungsgebiet hervor, das als sogenannte Spintronik oder auch spinbasierte Elektronik bekannt ist, welche den intrinsischen Spin der Elektronen nutzt. Wie erwartet lieferte die Spintronik eine neue Generation von magnetischen Bauelementen, welche in Festplatten und magnetoresistiven RAM-Speichern (MRAM, magnetic random access memory) zu fi sind. Die großen Vorteile der spintronischen Bauelemente sind die Nichtvolalität, die höheren Geschwindigkeiten, die verbesserte Datendichte und der geringerer Energieverbrauch. GMR-Bauteile werden bereits in der Industrie als magnetische Speicher und Leseköpfe verwendet. Die Qualität der GMR-Bauteile kann durch die Entwicklung von neuen magnetischen Materialien aber auch durch Verkleinerung, also Nutzung der Nanoskala verbessert wer- den. Zu den gewünschten charakteristischen Eigenschaften dieser neuen Materialien zählen eine höhere Spinpolarisation, höher erreichbare Curie-Temperaturen und eine verbesserte Spinfi tion. Halbmetalle, wie z.B., Heusler-Legierungen, Perovskite oder auch doppeloxide sind hierfür gute Kandidaten, weil von ihnen eine hohe Polarisierbarkeit erwartet wird. Die Bauteile, die in dieser Arbeit diskutiert werden, bestehen aus einer NiMnSb-Heusler-Legierung und Permalloy als ferromagnetische Schichten getrennt durch Cu als nichtmagnetische Schicht. Die Dissertation beinhaltet hauptsächlich zwei Aspekte nämlich die Herstellung und Charakterisierung von Nanosäulen. Die benutzte Schichtung zur Herstellung ist Ru/Py/Cu /NiMnSb, welche mittels MBE (molecular beam epitaxy) auf einem InP-Substrat mit einem (In,Ga)As-Puff gewachsen ist. Eine neue Herstellungsmethode, welche Metallmasken gegenüber der früher in unserer Arbeitsgruppe gängigen Methode (Verwendung von Resistmasken) nutzt, um eine erhöhte Probenfunktionalität zu erreichen, wird im Detail diskutiert. Ebenso werden die Vorteile dieser neuen Methode und das Detail der alten Methode vollständig in Kapitel 3 erläutert. Im Fokus des zweiten Teils (Kapitel 4 und 5) stehen elektrische Messungen und Charakterisierung der Nanos¨aulen im Hinblick auf den GMR und den Spintransfer-Moment-Messungen (SST). In Kapitel 4 werden die Ergebnisse der Strommessungen, die senkrecht zur GMR-Ebene (CPP-GMR) bei verschiedenen Temperaturen und eines in der Ebene angelegten Magnetfeldes durchgeführt wurden vorgestellt zudem wird die Abhängigkeit des CPP-GMR von Bias-Strömen und von der Formanisotropy der Bauteile untersucht. Ergebnisse dieser Messungen zeigen, dass die Bauteile eine groe Formanisotropy aufweisen. In den darauffolgenden Kapiteln werden Spintransfer-Moment Messungen, die durch magnetisches Schalten in den Bauteilen hervorgerufen wurden besprochen. Kritische Stromdichten liegen in der Größenordnung 106 A/cm2, welche eine Größenordnung kleiner ist als der aktuelle Industriestandard. Unsere Ergebnisse zeigen eine starke Abhängigkeit der zwei magnetischen Konfigurationsmöglichkeiten der Nanosäulen (parallel und anti- parallel) von dem in-plane Magnetfeld. Schließlich wurden vier magnetische Feldbereiche, basierend auf der Stabilität der magnetischen Konfiguration (P stabil, AP stabil, P und AP stabil, P und AP instabil) identifiziert. KW - Giantmagnetoresistance KW - spin-transfer torque KW - Heusler KW - CPP-GMR KW - Spin-Transfer-Drehmoment KW - Heusler KW - Riesenmagnetowiderstand KW - Spintronik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-102226 ER - TY - THES A1 - Quast, Jan-Henrik T1 - Influence of Hot Carriers on Spin Diffusion in Gallium Arsenide T1 - Über den Einfluss heißer Ladungsträger auf Spindiffusion in Galliumarsenid N2 - Since the late 20th century, spintroncis has become a very active field of research [ŽFS04]. The prospect of spin based information technology, featuring strongly decreased energy consumption and possibly quantum-computation capabilities, has fueled this interest. Standard materials, like bulk gallium arsenide (GaAs), have experienced new attention in this context by exhibiting extraordinarily long lifetimes for nonequilibrium spin information, which is an important requirement for efficient spin based information storage and transfer. Another important factor is the lengthscale over which spin information can be transported in a given material and the role of external influences. Both aspects have been studied experimentally with innovative optical methods since the late 1990s by the groups of D. D. AWSHALOM and S. A. CROOKER et al. [KA99, CS05, CFL+05]. Although the pioneering experimental approaches presented by these authors led to a variety of insights into spin propagation, some questions were raised as well. Most prominently, the classical Einstein relation, which connects the mobility and diffusivity of a given particle species, seemed to be violated for electron spins in a bulk semiconductor. In essence, nonequilibrium spins appeared to move (diffuse) faster than the electrons that actually carry the spin. However, this contradiction was masked by the fact, that the material of interest was n-type GaAs with a doping concentration directly at the transition between metallic and insulating behavior (MIT). In this regime, the electron mobility is difficult to determine experimentally. Consequently, it was not a priori obvious that the spin diffusion rates determined by the newly introduced optical methods were in contradiction with established electrical transport data. However, in an attempt to extend the available data of optical spin microscopy, another issue surfaced, concerning the mathematical drift-diffusion model that has been commonly used to evaluate lateral spin density measurements. Upon close investigation, this model appears to have a limited range of applicability, due to systematic discrepancies with the experimental data (chapter 4). These deviations are noticeable in original publications as well, and it is shown in the present work that they originate from the local heating of electrons in the process of optical spin pumping. Based on insights gained during the second half of the 20th century, it is recapitulated why conduction electrons are easily overheated at cryogenic temperatures. The main reason is the poor thermal coupling between electrons and the crystal lattice (chapter 3). Experiments in the present work showed that a significant thermal gradient exists in the conduction band under local optical excitation of electron–hole pairs. This information was used to develop a better mathematical model of spin diffusion, which allowed to derive the diffusivity of the undisturbed system, due to an effective consideration of electron overheating. In this way, spin diffusivities of n-GaAs were obtained as a function of temperature and doping density in the most interesting regime of the metal–insulator-transition. The experiments presented in this work were performed on a series of n-type bulk GaAs samples, which comprised the transition between metallic conductivity and electrical insulation at low temperatures. Local electron temperature gradients were measured by a hyperspectral photoluminescence imaging technique with subsequent evaluation of the electron–acceptor (e,A$^0$) line shape. The local density of nonequilibrium conduction electron spins was deduced from scanning magneto-optic Kerr effect microscopy. Numerical evaluations were performed using the finite elements method in combination with a least-squares fitting procedure. Chapter 1 provides an introduction to historical and recent research in the field of spintronics, as far as it is relevant for the understanding of the present work. Chapter 2 summarizes related physical concepts and experimental methods. Here, the main topics are semiconductor optics, relaxation of hot conduction electrons, and the dynamics of nonequilibrium electron spins in semiconductors. Chapter 3 discusses optical heating effects due to local laser excitation of electron–hole pairs. Experimental evaluations of the acceptor-bound-exciton triplet lines led to the conclusion that the crystal lattice is usually not overheated even at high excitation densities. Here, the heat is efficiently dissipated to the bath, due to the good thermal conductivity of the lattice. Furthermore, the heating of the lattice is inherently limited by the weak heat transfer from the electron system, which on the other hand is also the reason why conduction electrons are easily overheated at temperatures below ≈ 30 K. Spatio-spectral imaging of the electron–acceptor-luminescence line shape allowed to trace the thermal gradient within the conduction band under focused laser excitation. A heat-diffusion model was formulated, which reproduces the experimental electron-temperature trend nicely for low-doped GaAs samples of n- and p-type. For high-doped n-type GaAs samples, it could be shown that the lateral electron-temperature profile is well approximated by a Gaussian. This facilitated easy integration of hot electron influence into the mathematical model of spin diffusion. Chapter 4 deals with magneto-optical imaging of optically induced nonequilibrium conduction-electron spins in n-GaAs close to the MIT. First, the spectral dependence of the magneto-optic Kerr effect was examined in the vicinity of the fundamental band gap. Despite the marked differences among the investigated samples, the spectral shape of the Kerr rotation could be described in terms of a simple Lorentz-oscillator model in all cases. Based on this model, the linearity of the Kerr effect with respect to a nonequilibrium spin polarization is demonstrated, which is decisively important for further quantitative evaluations. Furthermore, chapter 4 presents an experimental survey of spin relaxation in n-GaAs at the MIT. Here, the dependence of the spin relaxation time on bath temperature and doping density was deduced from Hanle-MOKE measurements. While all observed trends agree with established literature, the presented results extend the current portfolio by adding a coherent set of data. Finally, diffusion of optically generated nonequilibrium conduction-electron spins was investigated by scanning MOKE microscopy. First, it is demonstrated that the standard diffusion model is inapplicable for data evaluation in certain situations. A systematic survey of the residual deviations between this model and the experimental data revealed that this situation unfortunately persisted in published works. Moreover, the temperature trend of the residual deviations suggests a close connection to the local overheating of conduction electrons. Consequently, a modified diffusion model was developed and evaluated, in order to compensate for the optical heating effect. From this model, much more reliable results were obtained, as compared to the standard diffusion model. Therefore, it was shown conclusively that the commonly reported anomalously large spin diffusivities were at least in parts caused by overheated conduction electrons. In addition to these new insights some experimental and technological enhancements were realized in the course of this work. First, the optical resolution of scanning MOKE microscopy was improved by implementing a novel scanning mechanism, which allows the application of a larger aperture objective than in the usual scheme. Secondly, imaging photoluminescence spectroscopy was employed for spatially resolved electron-temperature measurements. Here, two different implementations were developed: One for lattice-temperature measurements by acceptor–bound exciton luminescence and a second for conduction-electron temperature measurements via the analysis of the electron–acceptor luminescence line shape. It is shown in the present work that the originally stated anomalously high spin diffusivities were caused to a large extent by unwanted optical heating of the electron system. Although an efficient method was found to compensate for the influence of electron heating, it became also evident that the classical Einstein relation was nonetheless violated under the given experimental conditions. In this case however, it could be shown that this discrepancy did not originate from an experimental artifact, but was instead a manifestation of the fermionic nature of conduction electrons. N2 - Seit dem späten 20. Jahrhundert hat sich die sogenannte Spintronik zu einem sehr aktiven Forschungsgebiet entwickelt [ŽFS04]. Die Aussichten auf eine Spin-basierte Informationsverarbeitung mit stark reduziertem Energieverbrauch und eventuell möglichen Quantenrechenfähigkeiten hat das Forschungsinteresse erheblich angeheizt. Standard-Halbleiter-Materialien wie Galliumarsenid (GaAs) erfuhren in diesem Zusammenhang neue Aufmerksamkeit auf Grund von außergewöhnlich langen Lebensdauern für Nichtgleichgewichts-Spins, welche eine wichtige Voraussetzung für eine effiziente Spin-basierte Speicherung und Übertragung von Informationen darstellt. Weitere wichtige Faktoren sind die Distanz über die Spin-Information in einem gegebenen Material transportiert werden kann sowie die Rolle von äußeren Einflüssen. Beide Aspekte wurden experimentell mit innovativen optischen Methoden seit den späten 1990er Jahren durch die Gruppen von D. D. AWSHALOM und S. A. CROOKER untersucht [KA99, CS05, CFL+05]. Obwohl diese zukunftsweisenden experimentellen Ansätze zu einer Vielzahl von Einsichten in die Ausbreitung und Dynamik von Nichtgleichgewichts-Spins führten, wurden auch einige Fragen aufgeworfen. Am deutlichsten fiel auf, dass die Einsteinsche Beziehung zwischen Mobilität und Diffusivität für Elektronenspins in einem Volumenhalbleiter verletzt zu sein scheint. Stark vereinfacht gesagt, scheinen Nichtgleichgewichts-Spins schneller zu diffundieren als sich die dazugehörigen Elektronen bewegen können. Dieser Widerspruch könnte allerdings auch daher stammen, dass das hier untersuchte Material n-Typ GaAs mit Dotier-Konzentrationen direkt am Metall-Isolator-Übergang war. In diesem Bereich ist die korrekte experimentelle Bestimmung der Elektronenbeweglichkeit aus praktischen Gründen schwierig. Folglich konnte nicht von vornherein der Schluss gezogen werden, dass die mit den neuen optischen Methoden bestimmten Spindiffusionsraten tatsächlich im Widerspruch zu etablierten elektrischen Transportdaten standen. Es gab somit keinen unmittelbaren Grund, die quantitativen Ergebnisse in Frage zu stellen. Bei dem Versuch, die Datenlage zur optischen Spin-Mikroskopie an GaAs systematisch zu erweitern, hat sich allerdings gezeigt, dass die mathematisch-numerische Drift-Diffusions-Analyse, die gemeinhin verwendet wurde um laterale Spindichte-Messungen auszuwerten, grundlegende Probleme aufweist. Eine genaue Analyse der Thematik hat ergeben, dass das verwendete Modell bei sehr tiefen Temperaturen nur bedingt anwendbar ist (Kapitel 4). Dies äußert sich zum Beispiel in den oben erwähnten Publikationen bereits durch deutlich sichtbare Abweichungen zwischen dem Modell und den experimentellen Daten. In der vorliegenden Arbeit wird gezeigt, dass diese Diskrepanzen durch eine lokale Überhitzung der Leitungsband-Elektronen hervorgerufen wird, wie sie bei optischen Band-Band-Anregungen kaum zu vermeiden ist. Mit Hilfe von Erkenntnissen aus der zweiten Hälfte des 20. Jahrhunderts wird rekapituliert, warum Leitungselektronen bei kryogenen Temperaturen durch optische Anregung extrem leicht überhitzt werden. Der Grund dafür ist die schlechte thermische Kopplung zwischen den Elektronen und dem Kristallgitter (Kapitel 3). Außerdem wird experimentell direkt gezeigt, dass unter lokaler optischer Anregung von Elektron–Loch-Paaren deutliche thermische Gradienten im Leitungsband entstehen. Die daraus gewonnenen Informationen werden anschließend verwendet, um das mathematische Diffusionsmodell für die Auswertung optischer Spin-Mikroskopie-Daten zu verbessern. Dies ermöglichte schließlich, die Diffusion von Nichtgleichgewichts-Spins im Leitungsband über einen weiten Temperatur- und Dotierdichtebereich am Metall-Isolator-Übergang zu untersuchen (Kapitel 4.4). Die in dieser Arbeit vorgestellten Experimente wurden an einer Reihe von n-Typ Volumen-GaAs Proben mit Dotierdichten zwischen 7 × 10$^15$cm$^−3$ und 7 × 10$^16$cm$^−3$ bei Badtemperaturen zwischen 5K und 40K durchgeführt. Die lokale Elektronentemperatur wurde mit Hilfe verschiedener bildgebender Methoden vermessen, die auf der Photolumineszenz-Messung des Elektron–Akzeptor-Übergangs (e, A$^0$) basieren. Ortsaufgelöste Spindichte-Messungen wurden mit Hilfe der abrasternden magneto-optischen Kerr-Mikroskopie vorgenommen. Die numerische Auswertung basiert größtenteils auf der Finite-Elemente-Methode in Kombination mit der iterativen Anpassung der Modelle durch die Minimierung der quadratischen Abweichung. Die Arbeit ist wie folgt strukturiert. Die Einleitung in Kapitel 1 fasst einige zurückliegende Forschungsergebnisse und Erkenntnisse zusammen, die für das Verständnis der vorliegenden Arbeit relevant sind. In Kapitel 2 werden anschließend grundlegende physikalische Konzepte erläutert, die für die nachfolgenden Erörterungen von Bedeutung sind. Insbesondere werden hier die Themen Halbleiter-Optik, Relaxation heißer Leitungselektronen und die dynamischen Eigenschaften von Nichtgleichgewichts-Elektronenspins in Halbleitern sowie die dazugehörigen experimentellen Methoden und Techniken diskutiert. Kapitel 3 thematisiert die Heizwirkung, die sich bei lokaler optischer Anregung von Elektron–Loch-Paaren ergibt. Experimentelle Untersuchungen der Photolumineszenz von Akzeptor-gebundenen Exzitonen führen zu dem Schluss, dass das Kristallgitter in der Regel nicht signifikant überhitzt wird. Dies gilt auch bei relativ hohen Anregungsdichten, da die eingetragene Wärme auf Grund der guten Wärmeleitfähigkeit des Gitters effizient im Kristall verteilt und zum Wärmebad abgeführt wird. Des Weiteren wird der Wärmeeintrag ins Gitter durch die schlechte thermische Kopplung der Elektronen zum Gitter beschränkt. Dies ist zugleich auch der Grund, warum die Leitungsband-Elektronen bei Temperaturen unterhalb von ca. 30K sehr leicht überhitzen können. Die räumlich-spektrale Abbildung der Photolumineszenz des Elektron–Akzeptor-Übergangs erlaubt es hier, den räumlichen Temperaturverlauf innerhalb des Leitungsbandes unter fokussierter Laseranregung sichtbar zu machen. Ein Wärmetransport-Modell wird formuliert, das bei niedrig dotierten GaAs Proben den experimentellen Verlauf der Elektronentemperatur gut wiedergibt. Bei hochdotierten Proben kann der räumliche Temperaturverlauf allerdings auch sehr gut durch eine Gauß-Kurve beschrieben werden. Diese Näherung hat den praktischen Vorteil, dass sie sich auf handhabbare Weise mit dem mathematisch Modell zur Beschreibung der Spindiffusion verbinden lässt. Kapitel 4 befasst sich mit magneto-optischer Bildgebung von optisch induzierten Nichtgleichgewichts-Leitungselektronen-Spins in n-Typ GaAs am Metall-Isolator-Übergang. Zuerst wird die spektrale Abhängigkeit des magneto-optischen Kerr-Effekts in der spektralen Umgebung der Fundamentalbandlücke untersucht. Es wird gezeigt, dass trotz der deutlichen Unterschiede zwischen den untersuchten Proben die spektrale Form in allen Fällen sehr gut mit einem einfachen Lorentz-Oszillator-Modell angenähert werden kann. Basierend auf diesem Modell wird die Linearität des Kerr-Effekts in Bezug auf den Grad der Spinpolarisation untersucht, was für eine quantitative Auswertungen von entscheidender Bedeutung ist. Des Weiteren wird in Kapitel 4 eine umfangreiche experimentelle Untersuchung von Spin-Relaxationszeiten in n-Typ GaAs am Metall-Isolator-Übergang vorgestellt. Dabei wurde die Abhängigkeit der Spinrelaxationszeit von der Badtemperatur und der Dotierungsdichte mit Hilfe von Hanle-MOKE Messungen ermittelt. Alle beobachteten Trends stimmen gut mit publizierten Daten überein, erweitern jedoch die vorhandene Datenlage erstmals um einen zusammenhängenden Datensatz, der einen großen Temperatur- und Dotierdichtebereich abdeckt. Zu guter Letzt wird die Diffusion von optisch erzeugten Nichtgleichgewichts-Leitungselektronen-Spins durch abrasternde MOKE-Mikroskopie untersucht. Hier wird erstmals gezeigt, dass das Standard-Diffusions-Modell in bestimmten Situationen nicht zur Auswertung verwendet werden kann. Eine systematische Übersicht über die Abweichungen zwischen diesem Modell und den experimentellen Daten zeigt, dass dies leider in einigen der oben erwähnten Veröffentlichungen der Fall ist. Des Weiteren deutet die Temperaturabhängigkeit der Abweichungen auf einen engen Zusammenhang zur lokalen Überhitzung der Leitungselektronen hin. Basierend darauf wird ein modifiziertes Diffusionsmodell vorgestellt, bei dem die Auswirkung der Elektronenüberhitzung berücksichtigt wird. Dieses Modell erweist sich als sehr viel zuverlässiger für die Ermittlung von Spindiffusionsraten, welche dadurch erstmals systematisch für einen großen Temperatur- und Dotierbereich erfasst werden konnten. Dies ist ein starkes Indiz dafür, dass die häufig beobachteten ungewöhnlich hohen Spindiffusionsraten zumindest teilweise auf die Überhitzung der Leitungselektronen zurückzuführen sind. Zusätzlich zu diesen neuen Erkenntnissen wurden im Zuge dieser Arbeit einige experimentelle und technologische Optimierungen entwickelt und realisiert. Zunächst wurde die optische Auflösung der Raster-MOKE-Mikroskopie durch die Implementierung einer neuen Raster-Methode verbessert. Des Weiteren wurden zwei verschiedene Arten der bildgebenden Photolumineszenz-Spektroskopie implementiert und optimiert, um ortsaufgelöste Messungen der Elektronen- und Gittertemperatur durchzuführen. In der vorliegenden Arbeit wird gezeigt, dass die oftmals angegeben sehr hohen Spindiffusionsraten zu einem großen Teil durch die Überhitzung des Elektronensystems verursacht werden. Obwohl eine effiziente Methode gefunden wurde, den Einfluss dieser Überhitzung mathematisch zu berücksichtigen, ist es dennoch offensichtlich, dass die klassische Einstein-Beziehung unter den gegebenen Versuchsbedingungen nicht immer erfüllt war. In diesem Fall kann jedoch argumentiert werden, dass die Ursache hierfür kein experimentelles Artefakt war, sondern eine Manifestation der fermionischen Natur der Leitungsbandelektronen. KW - Galliumarsenid KW - Heißes Elektron KW - Spindiffusion KW - Spintronik KW - spindiffusion KW - Semiconductor KW - Hot electron KW - Optische Spektroskopie KW - Spintronics KW - Diffusion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147611 ER - TY - THES A1 - Pakkayil, Shijin Babu T1 - Towards ferromagnet/superconductor junctions on graphene T1 - Ein Weg zu Ferromagnet/Supraleiter Grenzflächen auf Graphen N2 - This thesis reports a successful fabrication and characterisation of ferromagnetic/superconductor junction (F/S) on graphene. The thesis preposes a fabrication method to produce F/S junctions on graphene which make use of ALD grown Al2O3 as the tunnel barrier for the ferromagnetic contacts. Measurements done on F/G/S/G/F suggests that by injecting spin polarised current into the superconductor, a spin imbalance is created in the quasiparticle density of states of the superconductor which then diffuses through the graphene channel. The observed characteristic curves are similar to the ones which are already reported on metallic ferromagnet/superconductor junctions where the spin imbalance is created using Zeeman splitting. Further measurements also show that the curves loose their characteristic shapes when the temperature is increased above the critical temperature (Tc) or when the external magnetic field is higher then the critical field (Hc) of the superconducting contact. But to prove conclusively and doubtlessly the existence of spin imbalance in ferromagnet/superconductor junctions on graphene, more devices have to be made and characterised preferably in a dilution refrigerator. N2 - Diese Arbeit berichtet über die erfolgreiche Herstellung und Charakterisierung eines Ferromagnet-Supraleiter (F/S)-Kontaktes. Die Arbeit schlägt eine Herstellungsmetode vor, um F/S-Kontake auf Graphen zu erstellen, welche ALD wachsendes Al2O3 als Tunnelbarriere für die ferromagnetischen Kontakte verwendet. Messungen an F/G/S/G deuten darauf hin, dass durch Injektion eines spinpolarisierten Stroms in den Supraleiter ein Spinungleichgewicht in der Quasiteilchendichte der Zustände des Supraleiters erzeugt wird, welche dann durch die Graphenkanäle diffundieren. Die beobachteten charakteristischen Kurven sind vergleichbar mit solchen, über die bereits in metallischen Ferromagnet/Supraleiter-Kontakten berichtet wurde, in denen das Spinungleichgewicht durch die Zeemann Aufspaltung erzeugt wird. Weitere Messungen zeigen auch, dass die Kurven ihre charakteristische Form verlieren, wenn die Temperatur über die kritische Temperatur erhöht wird oder das äußere Magnetfeld größer als das kritische Magnetfeld (HC) des supraleitenden Kontakts ist. Um die Existenz des Spinungleichgewichts in Ferromaget/Supraleiter-Kontakten auf Graphen schlussfolgernd und zweifelsfrei zu beweisen, wurden mehrere Proben hergestellt und bevorzugt in einem Mischungskryostaten charakterisiert. KW - Graphen KW - Ferromagnetikum KW - Supraleiter KW - Spintronics KW - Graphene KW - Superconductor KW - Ferromagnet KW - Spintronik Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153863 ER - TY - THES A1 - Lutz, Peter T1 - Surface and Interface Electronic Structure in Ferroelectric BaTiO\(_3\) T1 - Die elektronische Struktur an der Grenz- und Oberfläche des Ferroelektrikums BaTiO\(_3\) N2 - Transition metal oxides (TMO) represent a highly interesting material class as they exhibit a variety of different emergent phenomena including multiferroicity and superconductivity. These effects result from a significant interplay of charge, spin and orbital degrees of freedom within the correlated d-electrons. Oxygen vacancies (OV) at the surface of certain d0 TMO release free charge carriers and prompt the formation of a two-dimensional electron gas (2DEG). Barium titanate (BaTiO3) is a prototypical and promising d0 TMO. It displays ferroelectricity at room temperature and features several structural phase transitions, from cubic over tetragonal (at room temperature) and orthorhombic to rhombohedral. The spontaneous electric polarization in BaTiO3 can be used to manipulate the physical properties of adjacent materials, e.g. in thin films. Although the macroscopic properties of BaTiO3 are studied in great detail, the microscopic electronic structure at the surface and interface of BaTiO3 is not sufficiently understood yet due to the complex interplay of correlation within the d states, oxygen vacancies at the surface, ferroelectricity in the bulk and the structural phase transitions in BaTiO3. This thesis investigates the electronic structure of different BaTiO3 systems by means of angle-resolved photoelectron spectroscopy (ARPES). The valence band of BaTiO3 single crystals is systematically characterized and compared to theoretical band structure calculations. A finite p-d hybridization of titanium and oxygen states was inferred at the high binding energy side of the valence band. In BaTiO3 thin films, the occurrence of spectral weight near the Fermi level could be linked to a certain amount of OV at the surface which effectively dopes the host system. By a systematic study of the metallic surface states as a function of temperature and partial oxygen pressure, a model was established which reflects the depletion and accumulation of charge carriers at the surface of BaTiO3. An instability at T ~ 285K assumes a volatile behavior of these surface states. The ferroelectricity in BaTiO3 allows a control of the electronic structure at the interface of BaTiO3-based heterostructures. Therefore, the interface electronic structure of Bi/BaTiO3 was studied with respect to the strongly spin-orit coupled states in Bi by also including a thickness dependent characterization. The ARPES results, indeed, confirm the presence of Rashba spin-split electronic states in the bulk band gap of the ferroelectric substrate. By varying the film thickness in Bi/BaTiO3, it was able to modify the energy position and the Fermi vector of the spin-split states. This observation is associated with the appearance of an interface state which was observed for very low film thickness. Both spectral findings suggest a significant coupling between the Bi films and BaTiO3. N2 - Übergangsmetalloxide stellen eine hochinteressante Materialklasse dar, da sie eine Vielzahl neuartiger Phänomene, wie z.B. multiferroische Eigenschaften und Supraleitung, aufweisen. Diese Effekte sind die Folge eines komplexen Zusammen- spiels zwischen den Freiheitsgraden von Ladung, Spin und der orbitalen Komponente innerhalb eines korrelierten d-Elektronensystems. Sauerstoffstörstellen an der Ober- fläche von einigen dieser Systeme führen zu der Ausbildung freier Ladungsträger und der damit verbundenen Erzeugung eines 2-dimensionalen Elektronengases (2DEG). Das in dieser Arbeit untersuchte Bariumtitanat (BaTiO3) ist ein typisches und sehr vielversprechendes d0-Übergangsmetalloxid. Zum einen ist es ferroelektrisch bei Raumtemperatur und zum anderen weist es mehrere strukturelle Phasenübergänge auf, von kubisch über tetragonal (bei Raumtemperatur) und orthorhombisch zu rhom- boedrisch. Die spontane elektrische Polarisation in BaTiO3 kann dazu verwendet werden um physikalische Eigenschaften angrenzender Materialsysteme, z.B. von Dünnfilmen, zu beeinflussen. Obwohl vor allem die makroskopischen ferroelektrischen Eigenschaften von BaTiO3 bereits detailliert untersucht wurden, ist die mikrosko- pische elektronische Struktur in BaTiO3 und in BaTiO3-Grenzflächen noch nicht voll- ständig verstanden. Der Grund hierfür ist ein komplexes Wechselspiel zwischen elek- tronischen Korrelationseffekten, Sauerstoffstörstellen, Ferroelektrizität und struk- turellen Aspekten. Diese Dissertation befasst sich mit der elektronischen Struktur von verschiede- nen BaTiO3-Systemen, unter Verwendung der winkelaufgelösten Photoelektronen- spektroskopie (PES). Zum einen wurde das Valenzband von BaTiO3-Einkristallen systematisch untersucht und mit theoretischen Rechnungen verglichen. Dabei konnte eine endliche p-d-Hybridisierung von Titan- mit Sauerstoff-Zuständen im Valenzband festgestellt werden. Weiterhin wurde in BaTiO3-Dünnfilmen das Auftreten von spek- tralem Gewicht nahe des Ferminiveaus beobachtet. Diese metallischen Zustände sind auf eine erhöhte Dichte von Sauerstoffstörstellen an der Oberfläche zurückzuführen, wodurch das System effektiv dotiert wird. Die systematische Untersuchung der elek- tronischen Struktur in Abhängigkeit von Temperatur und Sauerstoff-Partialdruck wurde erfolgreich durch ein Modell beschrieben, das eine Instabilität der metallischen Zustände bei T ≈ 285K aufzeigt. Die ferroelektrische Eigenschaft von BaTiO3 kann in Heterostrukturen dazu verwendet werden, um die elektronische Struktur an der Grenzfläche zu kontrol- lieren. Zu diesem Zweck wurde in dieser Arbeit die mikroskopische elektronische Struktur an der Grenzfläche von Bi/BaTiO3 bedeckungsabhängig charakterisiert und im Hinblick auf die spin-polarisierten Zustände in Bi untersucht. So konnten Rashba-spinaufgespaltene elektronische Zustände in der Volumenbandlücke des fer- roelektrischen Substrates nachgewiesen werden. Eine Variation der Filmdicke in Bi/BaTiO3 führte zu einer energetischen Verschiebung und zu einer Änderung des Fermivektors der spinaufgespaltenen Zustände. Diese Beobachtung hängt stark mit dem Ausbilden eines Grenzflächenzustandes zusammen, der für sehr niedrige Be- deckungen beobachtet wurde. Beide Effekte weisen zudem auf eine Wechselwirkung zwischen den Bi-Filmen und BaTiO3 KW - Bariumtitanat KW - Photoelektronenspektroskopie KW - Ferroelektrikum KW - Spintronik KW - Niederdimensionales Elektronengas KW - barium titanate KW - photoelectron spectroscopy KW - ferroelectricity KW - spintronic KW - two-dimensional electron gas Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159057 ER -