TY - JOUR A1 - Schneider, Eberhard A1 - Dittrich, Marcus A1 - Böck, Julia A1 - Nanda, Indrajit A1 - Müller, Tobias A1 - Seidmann, Larissa A1 - Tralau, Tim A1 - Galetzka, Danuta A1 - El Hajj, Nady A1 - Haaf, Thomas T1 - CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development JF - Gene N2 - Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny. KW - Autism spectrum disorders KW - DNA methylation KW - Genome KW - Autism KW - Frontal cortex KW - Human prefrontal cortex KW - Gene-expression KW - Schizophrenia KW - Patterns KW - Transcription KW - Epigenetics KW - Environment KW - Fetal brain development KW - DNA methylation dynamics KW - Methylome Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186936 VL - 592 IS - 1 ER - TY - JOUR A1 - Lepeta, Katarzyna A1 - Lourenco, Mychael V. A1 - Schweitzer, Barbara C. A1 - Martino Adami, Pamela V. A1 - Banerjee, Priyanjalee A1 - Catuara-Solarz, Silvina A1 - de la Fuente Revenga, Mario A1 - Marc Guillem, Alain A1 - Haider, Mouna A1 - Ijomone, Omamuyovwi M. A1 - Nadorp, Bettina A1 - Qi, Lin A1 - Perera, Nirma D. A1 - Refsgaard, Louise K. A1 - Reid, Kimberley M. A1 - Sabbar, Mariam A1 - Sahoo, Arghyadip A1 - Schaefer, Natascha A1 - Sheean, Rebecca K. A1 - Suska, Anna A1 - Verma, Rajkumar A1 - Vicidomini, Cinzia A1 - Wright, Dean A1 - Zhang, Xing-Ding A1 - Seidenbecher, Constanze T1 - Synaptopathies: synaptic dysfunction in neurological disorders - a review from students to students JF - Journal of Neurochemistry N2 - Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page . KW - Amyloid-beta oligomers; KW - Central nervous system KW - P75 Neurotrophin receptor KW - Cellular prion protein KW - Temporal-lobe epilepsy KW - Familial Alzheimers-disease KW - Inhibitory glycine receptor KW - Autism spectrum disorders KW - Alpha-synuclein oligomers KW - Dentate granule cells KW - Alzheimer disease KW - autism KW - Down syndrome KW - epilepsy KW - hyperekplexia KW - synapses Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187509 VL - 138 IS - 6 ER -