TY - JOUR A1 - Mitchell, Jonathan S. A1 - Li, Ni A1 - Weinhold, Niels A1 - Försti, Asta A1 - Ali, Mina A1 - van Duin, Mark A1 - Thorleifsson, Gudmar A1 - Johnson, David C. A1 - Chen, Bowang A1 - Halvarsson, Britt-Marie A1 - Gudbjartsson, Daniel F. A1 - Kuiper, Rowan A1 - Stephens, Owen W. A1 - Bertsch, Uta A1 - Broderick, Peter A1 - Campo, Chiara A1 - Einsele, Hermann A1 - Gregory, Walter A. A1 - Gullberg, Urban A1 - Henrion, Marc A1 - Hillengass, Jens A1 - Hoffmann, Per A1 - Jackson, Graham H. A1 - Johnsson, Ellinor A1 - Jöud, Magnus A1 - Kristinsson, Sigurdur Y. A1 - Lenhoff, Stig A1 - Lenive, Oleg A1 - Mellqvist, Ulf-Henrik A1 - Migliorini, Gabriele A1 - Nahi, Hareth A1 - Nelander, Sven A1 - Nickel, Jolanta A1 - Nöthen, Markus M. A1 - Rafnar, Thorunn A1 - Ross, Fiona M. A1 - da Silva Filho, Miguel Inacio A1 - Swaminathan, Bhairavi A1 - Thomsen, Hauke A1 - Turesson, Ingemar A1 - Vangsted, Annette A1 - Vogel, Ulla A1 - Waage, Anders A1 - Walker, Brian A. A1 - Wihlborg, Anna-Karin A1 - Broyl, Annemiek A1 - Davies, Faith E. A1 - Thorsteinsdottir, Unnur A1 - Langer, Christian A1 - Hansson, Markus A1 - Kaiser, Martin A1 - Sonneveld, Pieter A1 - Stefansson, Kari A1 - Morgan, Gareth J. A1 - Goldschmidt, Hartmut A1 - Hemminki, Kari A1 - Nilsson, Björn A1 - Houlston, Richard S. T1 - Genome-wide association study identifies multiple susceptibility loci for multiple myeloma JF - Nature Communications N2 - Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10−8), 6q21 (rs9372120, P=9.09 × 10−15), 7q36.1 (rs7781265, P=9.71 × 10−9), 8q24.21 (rs1948915, P=4.20 × 10−11), 9p21.3 (rs2811710, P=1.72 × 10−13), 10p12.1 (rs2790457, P=1.77 × 10−8), 16q23.1 (rs7193541, P=5.00 × 10−12) and 20q13.13 (rs6066835, P=1.36 × 10−13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development. KW - Cancer genetics KW - Genome-wide association studies KW - Myeloma Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165983 VL - 7 ER - TY - JOUR A1 - Stölzel, F. A1 - Mohr, B. A1 - Kramer, M. A1 - Oelschlägel, U. A1 - Bochtler, T. A1 - Berdel, W. E. A1 - Kaufmann, M. A1 - Baldus, C. D. A1 - Schäfer-Eckart, K. A1 - Stuhlmann, R. A1 - Einsele, H. A1 - Krause, S. W. A1 - Serve, H. A1 - Hänel, M. A1 - Herbst, R. A1 - Neubauer, A. A1 - Sohlbach, K. A1 - Mayer, J. A1 - Middeke, J. M. A1 - Platzbecker, U. A1 - Schaich, M. A1 - Krämer, A. A1 - Röllig, C. A1 - Schetelig, J. A1 - Bornhäuser, M. A1 - Ehninger, G. T1 - Karyotype complexity and prognosis in acute myeloid leukemia JF - Blood Cancer Journal N2 - A complex aberrant karyotype consisting of multiple unrelated cytogenetic abnormalities is associated with poor prognosis in patients with acute myeloid leukemia (AML). The European Leukemia Net classification and the UK Medical Research Council recommendation provide prognostic categories that differ in the definition of unbalanced aberrations as well as the number of single aberrations. The aim of this study on 3526 AML patients was to redefine and validate a cutoff for karyotype complexity in AML with regard to adverse prognosis. Our study demonstrated that (1) patients with a pure hyperdiploid karyotype have an adverse risk irrespective of the number of chromosomal gains, (2) patients with translocation t(9;11)(p21∼22;q23) have an intermediate risk independent of the number of additional aberrations, (3) patients with 4 abnormalities have an adverse risk per se and (4) patients with three aberrations in the absence of abnormalities of strong influence (hyperdiploid karyotype, t(9;11)(p21∼22;q23), CBF-AML, unique adverse-risk aberrations) have borderline intermediate/adverse risk with a reduced overall survival compared with patients with a normal karyotype. KW - Cancer genetics KW - Genetics research Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164530 VL - 6 ER - TY - JOUR A1 - Gatto, Francesco A1 - Schulze, Almut A1 - Nielsen, Jens T1 - Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics JF - Cell Reports N2 - Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network. KW - Cancer genetics KW - Genetics research Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164814 VL - 16 IS - 3 ER -