TY - JOUR A1 - Koepsell, Hermann T1 - Glucose transporters in brain in health and disease JF - Pflügers Archiv - European Journal of Physiology N2 - Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters incapillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-D-glucosecotransporters SGLT1 are expressed. The glucose transporters mediate uptake of D-glucose across the blood-brain barrier anddelivery of D-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demandsin response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified andproposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based onexperiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and theircerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, andSGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functionalchanges of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy defi-ciency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome KW - glucosetransporter KW - brain KW - GLUT1 KW - GLUT2 KW - GLUT3 KW - GLUT4 KW - SGLT1 KW - diabetes KW - Parkinson’s disease KW - stroke Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232746 SN - 0031-6768 VL - 472 ER - TY - JOUR A1 - Ziegler, Georg C. A1 - Almos, Peter A1 - McNeill, Rhiannon V. A1 - Jansch, Charline A1 - Lesch, Klaus‐Peter T1 - Cellular effects and clinical implications of SLC2A3 copy number variation JF - Journal of Cellular Physiology N2 - SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non‐allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT. KW - copy number variation KW - energy metabolism KW - glucose transporter KW - GLUT3 KW - neurodegeneration KW - neurodevelopment KW - SLC2A3 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218009 VL - 235 IS - 12 SP - 9021 EP - 9036 ER -